

ADVANCED GCE

CHEMISTRY A F325/01

Equilibria, Energetics and Elements

FINAL MARK SCHEME

Afternoon

Duration: 2 hours

MAXIMUM MARK 100 (keep this alignment and spacing)

This document consists of 24 pages

F325 V2 - 29/06/14

Question	Answer	Marks	Guidance
1 (a) (i)	$2K^{+}(g) + S^{2-}(g) \checkmark$ $2K^{+}(g) + S^{-}(g) + e^{-}$ $2K(g) + S(g)$ \checkmark	3	Mark each marking point independently Correct species AND state symbols required for each mark For S ²⁻ , DO NOT ALLOW S ⁻² For e ⁻ , ALLOW e For e ⁻ only , IGNORE any state symbols added ALLOW k and s It can be very difficult distinguishing K from k; S from s

1	(a)	(ii)	(The enthalpy change that accompanies)		IGNORE 'Energy needed' OR 'energy required'
			the formation of one mole of a(n ionic) compound		ALLOW one mole of compound is formed/made from its
			from its gaseous ions (under standard conditions) $\checkmark\checkmark$	2	gaseous ions
					ALLOW as alternative for compound: lattice, crystal, substance, solid
			Award marks as follows.		
			1st mark: formation of compound from gaseous ions		IGNORE : $2K^{+}(g) + S^{2-}(g) \longrightarrow K_2S(s)$
			2nd mark: one mole for compound only		(question asks for words)
			DO NOT ALLOW 2nd mark without 1st mark		ALLOW 1 mark (special case) for absence of 'gaseous' only, i.e.
			Note: A definition for enthalpy change of formation will receive no marks		the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓

1	1 (a) (i		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2116 (kJ mol ⁻¹) award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
			$-381 - (2 \times +89 + 279 + 2 \times +419 -200 + 640) \checkmark$ $-381 - 1735$ $= -2116 \checkmark (kJ mol^{-1})$	2	ALLOW for 1 mark ONE mistake with sign OR use of 2: -2027 (2 × 89 not used for K) -1697 (2 × 419 not used for K) -2516 (+200 rather than -200 for S 1st electron affinity) (+)2116 (wrong sign) -1354 (+381 instead of -381) (+)1354 (+1735 instead of -1735) -836 (-640 instead of +640) -1558 (-279 instead of +279) -1760 (-2 × 89 instead of +2 x 89) -439 (-2 × 419 instead of +2 x 419) -2120 (rounded to 3SF)
					For other answers, check for a single transcription error or calculator error which could merit 1 mark
					DO NOT ALLOW any other answers, e.g1608 (2 errors: 2 × 89 and 2 x 419 not used for K) -846 (3 errors:)

1 (b)	Lowest melting point KI RbCI Highest melting point NaBr Correct order ✓ Mark 2nd and 3rd marking points independently Attraction and ionic size linked: Greater attraction from smaller ions/closer ions/larger charge density ✓ Comparison needed Energy AND attraction/breaking bonds linked: More energy/heat to overcome attraction (between ions)		PULL ANNOTATIONS MUST BE USED ORA throughout Response must clearly refer to ions for explanation marks 2nd and 3rd marking point must be comparative DO NOT ALLOW incorrect named particles, e.g. 'atoms', 'molecules', Na, Cl, Cl ₂ , 'atomic', etc DO NOT ALLOW responses using nuclear size or attraction DO NOT ALLOW responses linked with loss of electrons IGNORE larger electron density ALLOW smaller sum of radii gives a greater ionic attraction IGNORE NaBr has greater ionic attraction IGNORE NaBr has smallest ionic radius (not focussing on size of each ion) ASSUME bonds broken are ionic unless otherwise stated DO NOT ALLOW incorrect named particles, e.g. 'atoms', 'melogulas', Na, Cl, Cl, 'atomic', etc.
	OR More energy/heat to break (ionic) bonds ✓	3	'atoms', 'molecules', Na, Cl, Cl ₂ , 'atomic', etc Note : Comparison for energy only (i.e. link between more energy and breaking bonds/overcoming attraction)
	Total	10	

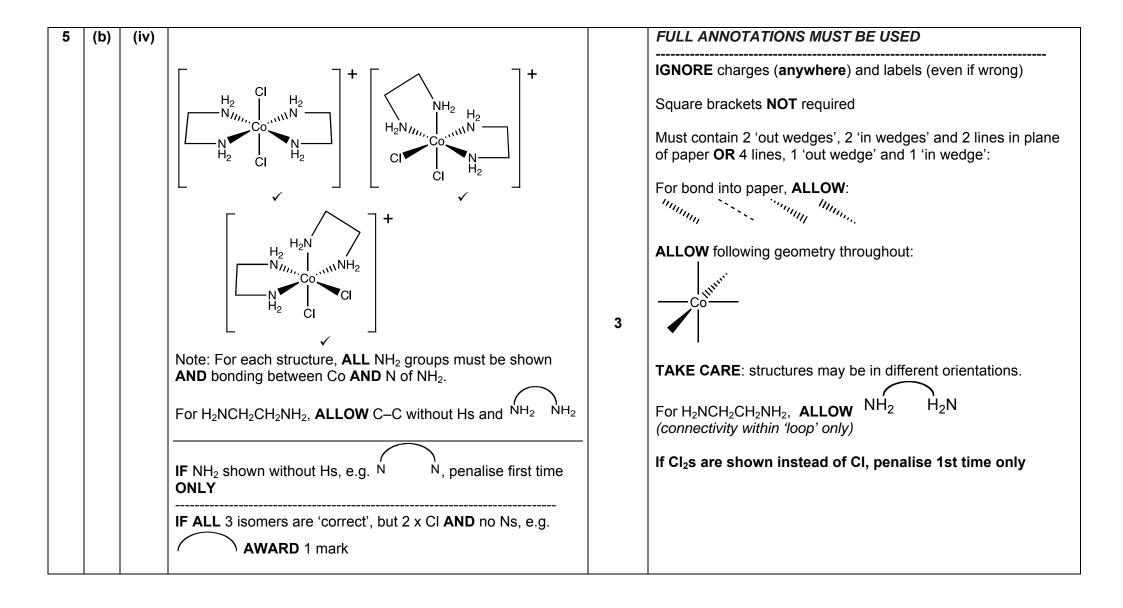
(Quest	ion	Answer	Marks	Guidance
2	(a)	(i)	(entropy) decreases AND (solid/ice has) less disorder/ more order/ fewer ways of arranging energy/ less freedom/ less random molecules ✓	1	ORA decreases and reason required for mark ASSUME change is for freezing of water unless otherwise stated DO NOT ALLOW atoms are more ordered
2	(a)	(ii)	(entropy) increases AND (CO₂) gas is formed ✓ Could be from equation with CO₂(g)	1	increases and reason required for mark ASSUME gas is CO ₂ unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. H ₂) ALLOW more gas
2	(a)	(iii)	entropy decreases AND $3 \text{ mol } O_2 \text{ form 2 mol } O_3$ OR $3O_2 \rightarrow 2O_3$ OR $3 \text{ mol gas form 2 mol gas}$	1	decreases and reason required for mark For mol, ALLOW molecules ALLOW multiples, e.g. $1\frac{1}{2}O_2 \rightarrow O_3$; $O_2 + \frac{1}{2}O_2 \rightarrow O_3$ ALLOW $O_2 + O \rightarrow O_3$ Note: DO NOT ALLOW 2 mol gas forms 1 mol gas unless linked to $O_2 + O \rightarrow O_3$ IGNORE reaction forms fewer moles/molecules

2	(b)	CARE: responses involve changes of negative values		FULL ANNOTATIONS MUST BE USED
		Feasibility AND ΔG Reaction becomes/is less feasible/not feasible AND		As alternative for 'less feasible' ALLOW 'less spontaneous' OR a comment that implies 'reaction no longer take place'
		ΔG increases OR ΔG becomes/is less negative/more positive OR $\Delta G > 0$ OR $\Delta H - T\Delta S > 0$		ALLOW for Δ G increases Δ G < 0 only at low T
		OR $\Delta H - T\Delta S$ becomes/is less negative/more positive OR $\Delta H > T\Delta S \checkmark$ OR $T\Delta S$ becomes/is more negative than $\Delta H \checkmark$		DO NOT ALLOW $T\Delta S > \Delta H$ (comparison wrong way round)
				NOTE: Last statement automatically scores 2nd mark ALSO
				IGNORE significance IGNORE magnitude for 1st marking point
		Effect on $T\Delta S$		
		$T\Delta S$ becomes more negative OR $T\Delta S$ decreases OR $-T\Delta S$ becomes more positive OR $-T\Delta S$ increases OR magnitude of $T\Delta S$ increases OR $\mid T\Delta S \mid$ increases \checkmark	2	DO NOT ALLOW $T \triangle S$ increases IGNORE significance
				APPROACH BASED ON TOTAL ENTROPY: Feasibility with increasing temperature Reaction becomes less feasible/not feasible
				AND $\Delta S - \Delta H/T$ OR ΔS_{total} decreases/ less positive \checkmark Effect on $\Delta H/T$
				$\Delta H/T$ is less negative OR $\Delta H/T$ increases OR $-\Delta H/T$ decreases
				OR magnitude of ∆ <i>H</i> / <i>T</i> decreases √

2	(c)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 75.962 OR 75.96 OR 76.0 OR 76, award 2 marks		
			$\Delta S = (33 + 3 \times 189) - (76 + 3 \times 131)$ = (+)131 (J K ⁻¹ mol ⁻¹) \checkmark		DO NOT ALLOW –131
			ΔG = 115 – (298 × 0.131) = (+) 75.962 OR 75.96 OR 76.0 OR 76 (kJ K ⁻¹ mol ⁻¹) \checkmark	2	ALLOW ECF from incorrect calculated value of ΔS
2	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 878 OR 877.9 OR 877.86, award 2 marks		ALLOW total entropy statement: $\Delta S(\text{total}) = 0$ OR $\Delta S(\text{total}) > 0$
			(For feasibility) $\Delta G = 0$ OR $\Delta G < 0$ OR $\Delta H - T\Delta S < 0$ OR $T = \frac{\Delta H}{\Delta S}$		ALLOW ECF from incorrect calculated value of ΔS from 2(c)(i) ALLOW 878 up to calculator value of 877.862595 correctly
			$T = \frac{115}{0.131} = 878 \text{ K} \checkmark$	2	rounded
	<u> </u>		Total	9	

C	Question		Answer		Guidance	
3	(a)		$(K_c =) \frac{[C_2H_2][H_2]^3}{[CH_4]^2} \checkmark$	1	Square brackets are essential State symbols not required. IGNORE incorrect state symbols	
3	(b)	(i)	amount of $H_2 = 3 \times 0.168$ = 0.504 (mol) \checkmark	1		

3	(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.153 mol ² dm ⁻⁶ , award 3 marks IF answer = 0.153 with incorrect units, award 2 marks	3	FULL ANNOTATIONS MUST BE USED ———————————————————————————————————
3	(b)	(iii)	Initial amount of CH ₄ amount of CH ₄ = $9.36 \times 10^{-2} + 2 \times 0.168$ = 0.4296 OR $0.43(0)$ (mol) \checkmark	1	NO ECF possible (all data given in question)


3	(c)						
		Change	K _c	Equilibrium amount of C ₂ H ₂ / mol	Initial rate		Mark by COLUMN
		temperature increased	greater	greater	greater		
		smaller container	same	smaller	greater		ALLOW obvious alternatives for greater/smaller/same, e.g.
		catalyst added	same	same	greater		increases/decreases; more/less
			✓	✓	✓	3	
3	(d)	oils/unsaturat	ck only ves: re of marga ation of alke ed molecule ammonia o HCI/hydrock	rine enes/unsaturated fa es R Haber process	ts/unsaturated	1	IGNORE just 'fuel' IGNORE hydrogenation of margarine ALLOW hydrogenation of fats/oils DO NOT ALLOW explosives OR fertilisers
	1				To	tal 10	

(Questi	on	Answer	Marks	Guidance
4	(a)	(i)	5 OR 5th (order) ✓	1	
4	(a)	(ii)	(stoichiometry in) rate equation does not match (stoichiometry) in overall equation ✓ Collision unlikely with more than 2 ions/species/particles ✓	2	ALLOW moles/ions/species/particles/molecules/atoms throughout (i.e. emphasis on particles) IGNORE more reactants in overall equation If number of species is stated, ALLOW 3–5 only (rate equation contains 5 ions) DO NOT ALLOW negative ions would repel
					(there is a mixture of positive and negative ions) IGNORE more than two reactants collide (not related to rate equation)
4	(b)		initial rate/ mol dm ⁻³ s ⁻¹ initial rate/ mol dm ⁻³ s ⁻¹		ALLOW lines starting close to 0,0
		Straight upward line			ALLOW 2nd order line with 'straight' section early or late as long as an upward curve is seen between.
			AND starting at 0,0 ✓ Curve with increasing gradient AND starting at 0,0 ✓	2	
4	(c)	(i)	5.4(0) \(\sqrt{614.4(0)} \(\)	2	IGNORE sign ALLOW 614 OR 610

4	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 6.7×10^8 OR 670000000 dm ¹² mol ⁻⁴ s ⁻¹ , award 3 marks IF answer = 6.7×10^8 OR 670000000 with incorrect units, award 2 marks		ALLOW ECF from incorrect initial rates if 1st experimental results have not been used. (Look to 4(c)(i) to check) i.e. IF other rows have been used, then calculate the rate constant from data chosen.
			k to >2 SF: 666666666.7 ✓ OR		For k , ALLOW 1 mark for the following: 6.6×10^8 recurring
			k to 2 SF: 6.7 × 10 ⁸ OR 670000000 ✓ ✓		6.6 × 10 ⁸ 2 SF answer for <i>k</i> BUT one power of 10 out i.e. 6.7×10^9 OR 6.7×10^7
			units: dm ¹² mol ⁻⁴ s ⁻¹ ✓	3	ALLOW units in any order, e.g. mol ⁻⁴ dm ¹² s ⁻¹
4	(c)	(iii)	$(K_a =) 10^{-3.75}$ OR 1.78×10^{-4} (mol dm ⁻³) \checkmark $[H^+] = \sqrt{1.78 \times 10^{-4} \times 0.0200}$ $= 1.89 \times 10^{-3}$ (mol dm ⁻³) \checkmark		FULL ANNOTATIONS MUST BE USED
			initial rate = $6.7 \times 10^8 \text{ x } 0.01 \text{ x } 0.015^2 \text{ x } (1.89 \text{ x } 10^{-3})^2$ = 5.33×10^{-3} to 5.38×10^{-3} (mol dm ⁻³ s ⁻¹)		ALLOW ECF from calculated [H ⁺ (aq)] and calculated answer for <i>k</i> from 4(c)(ii)
			OR 5.3 × 10 ⁻³ to 5.4 × 10 ⁻³ (mol dm ⁻³ s ⁻¹) ✓ Actual value will depend on amount of acceptable rounding in steps and whether figures kept in calculator even if rounding is	3	e.g. If no square root taken, $[H^{+}] = 3.56 \times 10^{-6} \text{ mol dm}^{-3}$ and $rate = 1.91 \times 10^{-8} \text{ OR } 1.9 \times 10^{-8} \text{ by ECF}$
			written down. ALLOW any value in range given above.		2.1.2.1.2.1.2.1.3.1.3.1.3.2.3.2.3.1.3.2.3.1.2.1.2
			Total	13	

	Question	Answer	Marks	Guidance
5	(a)	(Transition element) has an ion with an incomplete/partially-		FULL ANNOTATIONS MUST BE USED
		filled d sub-shell/d-orbital ✓		ALLOW capital 'D' within definition DO NOT ALLOW d shell
		Scandium/Sc and zinc/Zn are not transition elements ✓		ALLOW if ONLY Sc and Zn are used to illustrate d block elements that are NOT transition elements This can be from anywhere in the overall response in terms of Sc, Sc ³⁺ , Zn, Zn ²⁺ OR incorrect charges, i.e. only Sc ⁺ , Sc ²⁺ , Zn ⁺
		Electron configurations of ions Sc ³⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓		In electron configurations, IF subscripts OR caps used, DO NOT ALLOW when first seen but credit subsequently
		Zn^{2+} AND $1s^22s^22p^63s^23p^63d^{10}$ \checkmark		ALLOW 4s ⁰ in electron configurations IGNORE [Ar] IGNORE electron configurations for other Sc and Zn ions
				ALLOW for Sc ³⁺ : Sc forms a 3+ ion; ALLOW Sc ⁺³ ALLOW for Zn ²⁺ : Zn forms a 2+ ion; ALLOW Zn ⁺²
		Sc ³⁺ AND d sub-shell empty / d orbital(s) empty ✓ Note : Sc ³⁺ must be the ONLY scandium ion shown for this mark		ALLOW Sc ³⁺ has no d sub-shell DO NOT ALLOW 'd sub-shell is incomplete' (in definition)
		Zn ²⁺ AND d sub-shell full / ALL d-orbitals full ✓ Note : Zn ²⁺ must be the ONLY zinc ion shown for this mark	6	DO NOT ALLOW 'd sub-shell is incomplete' (in definition)

5	(b)	(i)	Donates two electron/lone pairs to a metal ion OR Co ³⁺ ✓ DO NOT ALLOW metal (complex contains Co ³⁺)		ALLOW 'forms two coordinate bonds/dative covalent/dative bonds' as an alternative for 'donates two electron/lone pairs' Two is required for 1st marking point Two can be implied using words such as 'both' or 'each' For metal ion, ALLOW transition (metal) ion
			Electron/lone pair on N OR NH₂ (groups) ✓	2	Second mark is for the atom that donates the electron/lone pairs ALLOW both marks for a response that communicates the same using N as the focus: e.g. The two N atoms each donate an electron pair to metal ion
5	(b)	(ii)	[Co(H ₂ NCH ₂ CH ₂ NH ₂) ₂ Cl ₂] ⁺ ✓	1	Square brackets AND + charge required DO NOT ALLOW any charges included within square brackets ALLOW $[Co(C_2H_8N_2)_2Cl_2]^+$ OR $[CoC_4H_{16}N_4Cl_2]^+$ ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE $[Co(en)_2Cl_2]^+$ <i>simplifies question</i> Within formula, ALLOW $(Cl)_2$, (Cl_2) ALLOW CO Within the context of the question, CO is Co
5	(b)	(iii)	6 ✓	1	

5	(c)	(i)	O₂/oxygen bonds to Fe²+/Fe(II) ✓ Fe²+/Fe(II) essential for 1st marking point (When required,) O₂ substituted OR O₂ released ✓ Fe²+ not required for 2nd marking point (e.g. IGNORE Fe)	2	ASSUME that 'it' refers to oxygen ALLOW O ₂ binds to Fe ²⁺ OR O ₂ donates electron pair to Fe ²⁺ OR O ₂ is a ligand with Fe ²⁺ IGNORE O ₂ reacts with Fe ²⁺ OR O ₂ is around Fe ²⁺ ALLOW bond to O ₂ breaks when O ₂ required OR H ₂ O replaces O ₂ OR vice versa ALLOW CO ₂ replaces O ₂ OR vice versa ALLOW O ₂ bonds/binds reversibly
5	(c)	(ii)	$(K_{\text{stab}} =) \frac{[\text{HbO}_2(\text{aq})]}{[\text{Hb(aq)}] [O_2(\text{aq})]} \checkmark$ ALL Square brackets essential	1	ALLOW expression without state symbols (given in question)
5	(c)	(iii)	Both marks require a comparison		
			Stability constant/ K_{stab} value with CO is greater (than with complex in O ₂) \checkmark		IGNORE (complex with) CO is more stable
			(Coordinate) bond with CO is stronger (than O₂) OR CO binds more strongly ✓	2	ALLOW bond with CO is less likely to break (than O_2) OR CO is a stronger ligand (than O_2) OR CO has greater affinity for ion/metal/haemoglobin (than O_2)
					ALLOW CO bond formation is irreversible OR CO is not able to break away
					IGNORE CO bonds more easily OR CO complex forms more easily
	<u> </u>		Total	18	Cit de demplox forme more dueny

	Question		Answer	Marks	Guidance
6	(a)		CH ₃ COOH + H ₂ O = H ₃ O ⁺ + CH ₃ COO ⁻ ✓ Acid 1 Base 2 Acid 2 Base 1 ✓	2	IGNORE state symbols (even if incorrect) ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid–base pairs are ALLOW A and B for 'acid' and 'base' IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, i.e. CH₃COOH + H₂O ⇒ CH₃COOH₂⁺ + OH⁻ × Base 2 Acid 1 Acid 2 Base 1 ✓ NOTE For the 2nd marking point (acid–base pairs), this is the ONLY acceptable ECF i.e., NO ECF from impossible chemistry
6	(b)	(i)	Water dissociates/ionises \mathbf{OR} $H_2O = H^+ + OH^ \mathbf{OR}$ $2H_2O \Rightarrow H_3O^+ + OH^- \checkmark$	1	ALLOW $K_w = [H^+] [OH^-]$ OR $[H^+] [OH^-] = 10^{-14}$ (mol ² dm ⁻⁶) IGNORE breaking for dissociation IGNORE water contains H^+ and OH^- IGNORE $H_2O \rightarrow H^+ + OH^-$ i.e. no equilibrium sign IGNORE $2H_2O \rightarrow H_3O^+ + OH^-$ i.e. no equilibrium sign

6	(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.15×10^{-11} , award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
			$[H^{+}] = 10^{-3.06} = 8.71 \times 10^{-4} \text{ (mol dm}^{-3}) \checkmark$ $[OH^{-}] = \frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}} = 1.15 \times 10^{-11} \text{ (mol dm}^{-3}) \checkmark$ ALLOW answer to two or more significant figures 2SF: 1.1×10^{-11} ; 4SF: 1.148×10^{-11} ; calculator $1.148153621 \times 10^{-11}$	2	ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359×10^{-4} correctly rounded ALLOW alternative approach using pOH: pOH = $14 - 3.06 = 10.94 \checkmark$ [OH ⁻] = $10^{-10.94} = 1.15 \times 10^{-11}$ (mol dm ⁻³) \checkmark
6	(c)	(i)	2CH ₃ COOH + CaCO ₃ → (CH ₃ COO) ₂ Ca + CO ₂ + H ₂ O ✓	1	IGNORE state symbols ALLOW = provided that reactants on LHS For CO₂ + H₂O, ALLOW H₂CO₃ ALLOW Ca(CH₃COO)₂ ALLOW (CH₃COO⁻)₂Ca²⁺ BUT DO NOT ALLOW if either charge is missing or incorrect

6	(c)	(ii)	solution contains CH₃COOH AND CH₃COO⁻ ✓	1	ALLOW names: ethanoic acid for CH ₃ COOH ethanoate for CH ₃ COO ⁻
					ALLOW calcium ethanoate OR (CH ₃ COO) ₂ Ca for CH ₃ COO ⁻
					IGNORE 'acid, salt, conjugate base; responses must identify the acid and conjugate base as ethanoic acid and ethanoate
					IGNORE ethanoic acid is in excess (in question) BUT DO ALLOW some ethanoic acid is left over/present/some ethanoic acid has reacted
					IGNORE equilibrium: CH₃COOH ⇒ H ⁺ + CH₃COO ⁻ <i>Dissociation of ethanoic acid only</i>

6	(c)	(iii)	Quality of written communication, QWC 2 marks are available for explaining how the equilibrium		FULL ANNOTATIONS MUST BE USED
			system allows the buffer solution to control the pH on addition of H ⁺ and OH ⁻ (see below)		Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2
			CH ₃ COOH ⇒ H ⁺ + CH ₃ COO ⁻ ✓		DO NOT ALLOW HA
					ALLOW response in terms of H ⁺ , A ⁻ and HA
			CH ₃ COOH reacts with added alkali OR CH ₃ COOH + OH ⁻ \rightarrow OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ \rightarrow \checkmark		IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.
			Equilibrium → right OR Equilibrium → CH ₃ COO ⁻ ✓ (QWC)		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
			CH₃COO⁻ reacts with added acid ✓		
			Equilibrium → left OR Equilibrium → CH ₃ COOH ✓ (QWC)	5	ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid

6 (d)		FULL ANNOTATIONS MUST BE USED
	FIRST, CHECK THE ANSWER ON ANSWER LINE	IF there is an alternative answer, check to see if there is any ECF credit possible.
	IF answer = 11.48 OR 11.5 (g), award 5 marks	
		Incorrect use of [H $^+$] = $\sqrt{(CH_3COOH) \times K_a)}$ scores zero BUT IGNORE if an alternative successful method is present
	$[H^+] = 10^{-5} \text{ (mol dm}^{-3}) \checkmark$	
		Incorrect use of K_w , 1 max for [H ⁺] = 10 ⁻⁵ (mol dm ⁻³) BUT IGNORE if an alternative successful method is present
	[CH ₃ COO ⁻] = $\frac{1.75 \times 10^{-5}}{10^{-5}} \checkmark \times 0.200 = 0.350 \text{ mol dm}^{-3} \checkmark$	ALLOW n(CH ₃ COONa/CH ₃ COO ⁻)
	10~	$= \frac{1.75 \times 10^{-5}}{10^{-5}} \checkmark \times 0.08 = 0.14(0) \text{ (mol) } \checkmark \checkmark$
	n(CH ₃ COONa/CH ₃ COO ⁻) in 400 cm ³	
	$= 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol) } \checkmark$	Note: There is no mark just for
	mass CH₃COONa = 0.140 × 82.0 = 11.48 OR 11.5 (g) ✓	$n(CH_3COOH)$ in 400 cm ³ = 0.200 × $\frac{400}{1000}$ = 0.08 (mol)
		As alternative for the 4th and 5th marks, ALLOW :
	For ECF, n(CH ₃ COONa/CH ₃ COO ⁻) must have been	mass of CH ₃ COONa in 1 dm ³ = $0.350 \times 82.0 = 28.7 \text{ g}$ \checkmark
	calculated in step before	mass of CH ₃ COONa in 400 cm ³ = $28.7 \times \frac{400}{1000}$ = 11.48 g \checkmark
		COMMON ECF
		4.592 OR 4.6 g AWARD 4 marks use of 400/1000 twice

ALLOW variants of Henderson–Hasselbalch equation. $pK_a = -\log(1.75 \times 10^{-5}) = 4.757 \checkmark Calc: 4.75696$ $\log \frac{[CH_3COO^-]}{[CH_3COOH]} = pH - pK_a = 5 - 4.757 = 0.243$ $\frac{[CH_3COO^-]}{[CH_3COOH]} = 10^{0.243} = 1.75 \checkmark$ $[CH_3COO^-] = 1.75 \times 0.200 = 0.350 \text{ mol dm}^{-3} \checkmark$ $n(CH_3COONa/CH_3COO^-) \text{ in 400 cm}^3$ $= 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol) } \checkmark$ $\frac{400}{1000} = 0.14(0) \text{ (mol) } \checkmark$
mass CH₃COONa = 0.140 × 82.0 = 11.48 OR 11.5 (g) ✓ Total 17

	Question		Answer	Marks	Guidance
7	(a)		Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Units essential Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm ⁻³ AND pressure of 100 kPa OR 10 ⁵ Pa OR 1 bar ✓	2	As alternative for e.m.f., ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1M DO NOT ALLOW 1 mol ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
7	(b)	(i)	$2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq) \checkmark$	1	State symbols not required ALLOW = provided that reactants on LHS
7	(b)	(ii)	Assume Cu ²⁺ Cu OR Cu half cell unless otherwise stated. [Cu ²⁺] decreases OR < 1 mol dm ⁻³ AND Equilibrium (shown in table) shifts to left ✓		FULL ANNOTATIONS MUST BE USED
			more electrons are released by Cu \checkmark The cell has a bigger difference in $E \checkmark$	3	ALLOW E (for Cu ²⁺ Cu) is less positive / more negative /decreases IGNORE standard electrode potential (Cell no longer standard) IGNORE E* decreases CARE DO NOT ALLOW statements about silver E changing (CON) IGNORE just 'cell potential increases' (in the question) The final mark is more subtle and is a consequence of the less positive E value of the copper half cell

7	(c)	(i)	no/less CO₂ OR H₂O is only product OR greater efficiency ✓	1	IGNORE less pollution IGNORE less carbon emissions IGNORE less fossil fuels used IGNORE no/less greenhouse gas OR no global warming (H₂O vapour is a greenhouse gas)
7	(c)	(ii)	liquefied/as a liquid AND under pressure/pressurised ✓	1	IGNORE adsorption or absorption IGNORE low temperature DO NOT ALLOW liquidise processes are described in the question
7	(d)	(i)	E = -2.31 (V) ✓	1	- sign AND 2.31 required for the mark
7	(d)	(ii)	$4AI(s) + 4OH^{-}(aq) + 3O_{2}(g) + 6H_{2}O(I) \rightarrow 4AI(OH)_{4}^{-}(aq)$ species \checkmark balance \checkmark	2	IGNORE state symbols ALLOW multiples ALLOW 1 mark for an equation in which OH⁻ are balanced but have not been cancelled, e.g. 4Al(s) + 16OH⁻(aq) + 3O₂(g) + 6H₂O(l) → 4Al(OH)₄⁻(aq) + 12OH⁻(aq) ALLOW 1 mark if charge on Al(OH)₄ is omitted, i.e 4Al(s) + 4OH⁻(aq) + 3O₂(g) + 6H₂O(l) → 4Al(OH)₄(aq) ALLOW 1 mark for an 'correct equation' reversed, i.e. 4Al(OH)₄⁻(aq) → 4Al(s) + 4OH⁻(aq) + 3O₂(g) + 6H₂O(l)
					(5.1)4 (5.4)
			Total	11	

	Questio	n Answer	Marks	Guidance
8	(a)	Fe ₂ O ₃ + 3Cl ₂ + 10OH ⁻ → 2FeO ₄ ²⁻ + 6Cl ⁻ + 5H ₂ O ✓✓ First mark for all 6 species Second mark for balancing	2	ALLOW multiples ALLOW oxidation half equation for two marks $Fe_2O_3 + 10OH^- \rightarrow 2FeO_4^{2-} + 5H_2O + 6e^-$ Correct species would obtain 1 mark – question: equation for oxidation ALLOW variants forming H ⁺ for 1 mark, e.g: $Fe_2O_3 + 3CI_2 + 5OH^- \rightarrow 2FeO_4^{2-} + 6CI^- + 5H^+$ $Fe_2O_3 + 3CI_2 + 5OH^- \rightarrow 2FeO_4^{2-} + 5HCI + CI^-$
8	(b)	$Ba^{2+}(aq) + FeO_4^{2-}(aq) \rightarrow BaFeO_4(s) \checkmark$	1	Balanced ionic equation AND state symbols required DO NOT ALLOW +2 or –2 for ionic charges
8	(c)	Reason can ONLY be correct from correct reducing agent		
		reducing agent. ⁻ OR KI ✓		IGNORE H ⁺ OR acidified ALLOW iodide/potassium iodide but DO NOT ALLOW iodine
		l⁻ adds/donates/loses electrons AND		ALLOW I ⁻ loses electrons AND to form I ₂
		to FeO_4^{2-} OR to BaFeO ₄ OR to $Fe(VI)$ or to $Fe(+6)$ \checkmark ALLOW $Fe(6+)$ OR Fe^{6+}	2	ALLOW Fe(6+) OR Fe ⁶⁺

8	(d)			FULL ANNOTATIONS MUST BE USED		
		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 51.8%, award 4 marks.		For alternative answers, look first at common ECFs below. Then check for ECF credit possible using working below IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step		
		$n(S_2O_3^{2-})$ used = $0.1000 \times \frac{26.4}{1000} = 2.64 \times 10^{-3}$ (mol) \checkmark		Working must be to at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.880 allow 0.88 ECF answer above × ½ × 2/3 This mark may be seen in 2 steps via I ₂ but the mark is for both steps combined ECF 257.1 × answer above		
		$n(\text{FeO}_4^{2-}) = \frac{1}{2} \times \frac{2}{3} \times \frac{2.64 \times 10^{-3}}{3} = 8.8(0) \times 10^{-4} \text{ (mol) } \checkmark$				
		Mass BaFeO ₄ in sample = $8.8 \times 10^{-4} \times 257.1$ g = 0.226248 g \checkmark				
		% purity = $\frac{0.226248}{0.437} \times 100 = 51.8\%$ ✓		ECF answer above 0.437 ×100		
		MUST be to one decimal place (in the question)		ALLOW 51.7% FROM 0.226 g BaFeO ₄ (earlier rounding)		
		As an alternative for the final two marks, ALLOW : Theoretical amount of BaFeO ₄ = $\frac{0.437}{257.1}$ = 0.00170 (mol) \checkmark		Common ECFs: No × 2/3 for $n(\text{FeO}_4^{2-})$:		
		% purity = $\frac{8.8 \times 10^{-4}}{1.70 \times 10^{-3}} \times 100 = 51.8\%$ ✓	4	% purity = $77.7\%/77.6\%$ 3 marks No ÷ 2 for $n(\text{FeO}_4^{2-})$: % purity = 25.9% 3 marks		
				24.6 used instead of 26.4: % purity = 48.2% 3 marks		

8	(e)	gas: O₂ ✓		DO NOT ALLOW names IGNORE a balancing number shown before a formula
		precipitate: Fe(OH)₃ ✓		ALLOW Fe(OH) ₃ (H ₂ O) ₃
		equation: $2\text{FeO}_4^{2^-} + 5\text{H}_2\text{O} \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3 + 4\text{OH}^-$ OR $2\text{FeO}_4^{2^-} + \text{H}_2\text{O} + 4\text{H}^+ \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3 \checkmark$	3	ALLOW multiples ALLOW $2\text{FeO}_4^{2^-} + 11\text{H}_2\text{O} \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3(\text{H}_2\text{O})_3 + 4\text{OH}^-$
		Total	12	

GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2015

C	uesti	ion	Answer	Marks	Guidance		
1	(a)		(+)5 ✓	1	ALLOW 5+ OR V OR Cr ⁵⁺		
1	(b)		For equations, IGNORE any state symbols; ALLOW multiples	1	EXAMPLES $N_2 + 3H_2 = 2NH_3 \text{ (allow } \rightarrow) \text{ AND } \text{Fe/iron oxide}$ $2SO_2 + O_2 = 2SO_3 \text{ (allow } \rightarrow) \text{ AND } V_2O_5/\text{Pt}$ $2CO + 2NO \rightarrow 2CO_2 + N_2 \text{ AND } \text{Pt/Pd/Rh/Au}$ Equation for any alkene $+ H_2 \rightarrow \text{alkane } \text{AND } \text{Ni/Pt/Pd}$ $C_6H_6 + Cl_2 \rightarrow C_6H_5\text{Cl} + \text{HCl } \text{AND } \text{Fe/FeCl}_3/\text{Fe}^{3+}$ $C_6H_6 + \text{Br}_2 \rightarrow C_6H_5\text{Br} + \text{HBr } \text{AND } \text{Fe/FeBr}_3/\text{Fe}^{3+}$ $2H_2O_2 \rightarrow 2H_2O + O_2 \text{ AND } \text{MnO}_2$ For other examples, CHECK with TL		
1	(c)	(i)	Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) ✓ NOTE: Metal ion not required as Ni³+ is in the question	1	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds		
1	(c)	(ii)	C ₃ H ₁₀ N ₂ ✓	1	ALLOW in any order IGNORE structure		
1	(c)	(iii)	MARK INDEPENDENTLY		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW H ₂ NCH ₂ CH(CH ₃)NH ₂ OR H ₂ NCH(CH ₂ CH ₃)NH ₂ ALLOW secondary or tertiary diamines or mixture		
			Each N OR each NH₂ OR amine group has a lone pair/electron pair OR lone pairs shown on N atoms in structure ✓	2	IGNORE complex ion For other examples, CHECK with TL		

(Question		Answer	Marks	Guidance		
1	(c)	(iv)	6 ✓	1			
1	(c)	(v)	3–D diagrams of BOTH optical isomers required for the mark AND AND	1	In this part, Charge AND Square brackets NOT required IGNORE N or attempts to draw structure of bidentate ligand Other orientations possible but all follow same principle with 2nd structure being a mirror image of the first		

Question	Answer	Marks	Guidance
1 (d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Cu ²⁺		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation
1 (d)	Correct balanced equation $Cu^{2^+}(aq) + 2OH^-(aq) \longrightarrow Cu(OH)_2(s) \checkmark$ state symbols not required Observation blue precipitate/solid \checkmark REACTION OF Cu^{2^+} WITH excess $NH_3(aq)$ Correct balanced equation $[Cu(H_2O)_6]^{2^+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2^+} + 4H_2O \checkmark$ Observation deep/dark blue (solution) \checkmark	2	ALLOW $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2(H_2O)_4 + 2H_2O]$ ALLOW full or 'hybrid' equations, e.g. $Cu^{2+} + 2NaOH \rightarrow Cu(OH)_2 + 2Na^+$ $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2 + 6H_2O]$ $_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ ALLOW any shade of blue IGNORE initial precipitation of $Cu(OH)_2$ IGNORE $[Cu(NH_3)_4]^{2+}$ ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for $[Cu(H_2O)_6]^{2+}$
1 (d)	REACTION OF Cu ²⁺ WITH HCl(aq) Correct balanced equation $[Cu(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CuCl_4]^{2^-} + 6H_2O \checkmark$ Observation yellow (solution) \checkmark	2	IGNORE mention of different concentrations of HCl ALLOW $CuCl_4^{2-}$ i.e. no brackets OR $Cu(Cl)_4^{2-}$ ALLOW $[Cu(H_2O)_6]^{2^+} + 4HCl \longrightarrow [CuCl_4]^{2^-} + 6H_2O + 4H^+$ IGNORE $Cu^{2^+} + 4Cl^- \longrightarrow CuCl_4^{2^-}$ ALLOW green—yellow OR yellow—green DO NOT ALLOW yellow precipitate for observation

Questi	ion	Answer	Marks	Guidance
1 (d)		Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Co ²⁺		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation
		Correct balanced equation Co²+(aq) + 2OH⁻(aq) → Co(OH)₂(s) ✓ state symbols not required Observation blue precipitate/solid ✓	2	ALLOW $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2(H_2O)_4 + 2H_2O$ ALLOW full or 'hybrid' equations, e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$ $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$ $_4 + 2NaOH \rightarrow Co(OH)_2 + Na_2SO_4$ ALLOW full or 'hybrid' equations, e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$ $Co(OH)_2 + 2Na^+$ $Co(OH)_2 + 3CO(OH)_2 + 3$
1 (d)		REACTION OF Co ²⁺ WITH excess NH ₃ (aq) Correct balanced equation $[Co(H_2O)_6]^{2^+} + 6NH_3 \longrightarrow [Co(NH_3)_6]^{2^+} + 6H_2O \checkmark$		IGNORE initial precipitation of Co(OH)₂ ALLOW any shade of brown or yellow
		Observation brown/yellow (solution) ✓	2	DO NOT ALLOW brown/yellow precipitate for observation
1 (d)		REACTION OF Co ²⁺ WITH HCl(aq) Correct balanced equation $[Co(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CoCl_4]^{2^-} + 6H_2O \checkmark$ Observation blue (solution) \checkmark	2	IGNORE mention of different concentrations of HCI ALLOW $CoCl_4^{2-}$ i.e. no brackets OR $Co(Cl)_4^{2-}$ ALLOW $[Co(H_2O)_6]^{2^+} + 4HCl \longrightarrow [CoCl_4]^{2^-} + 6H_2O + 4H^+$ IGNORE $Co^{2^+} + 4Cl^- \longrightarrow CoCl_4^{2^-}$ ALLOW any shades of blue DO NOT ALLOW blue precipitate for observation
	ı	Total	14	

Q	uestion	Answer		Guidance			
2	(a)	NOTE: First 3 marks are ONLY available from an expression using [NO] ² Units are marked independently		the graph, The [NO] bel	nd [NO] are any co ow are the most o O] values, these a	commonly se	en.
		mark		[NO]	rate	k	k
		Use of any two correct values for rate and [NO] from graph		1.0 × 10 ⁻⁴	0.1×10^{-4} to	50000	5.0 × 10 ⁴
		e.g. for 5.0×10^{-4} and 4.2×10^{-4} ,			0.2×10^{-4}	100000	1.0 × 10 ⁵
		$k = \frac{4.2 \times 10^{-4}}{(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2}$		2.0 × 10 ⁻⁴	0.6×10^{-4} to	75000	7.5 × 10 ⁴
		$\kappa = (2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2$			0.7 × 10 ⁻⁴	87500	8.8 × 10 ⁴
				3.0×10^{-4}	1.5 × 10 ⁻⁴	83333	8.3 × 10 ⁴
		OR $4.2 \times 10^{-4} = k(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2 \checkmark$		4.0×10^{-4}	2.7 × 10 ⁻⁴	84375	8.4 × 10 ⁴
				5.0 × 10 ⁻⁴	4.2 × 10 ⁻⁴	84000	8.4 × 10 ⁴
		Calculation of k 2 marks		6.0×10^{-4}	6.0 × 10 ⁻⁴	83333	8.3×10^4
				7.0×10^{-4}	8.2 × 10 ⁻⁴	83673	8.4 × 10 ⁴
		FOR 1 MARK k calculated correctly from values obtained from graph BUT NOT in standard form AND/OR more than 2 SF e.g. $k = \frac{6.0 \times 10^{-4}}{(2.0 \times 10^{-2}) \times (6.0 \times 10^{-4})^2} = 83333.33$		principle. If	alues are given, any doubt, conta DRE any numbers	act TL.	
		OR FOR 2 MARKS k calculated correctly from values obtained from graph AND in standard form AND TO 2 SF e.g. k = 83333.33 gives 8.3 × 10⁴ √		from ONLY 1. Powers of 2. $[H_2]^2[NO]$ 1.	ASES that ALLON ONE of the follow 10 incorrect or all used instead of [H within ±0.2 of act	wing (2 mark sent in initial l ₂][NO] ²	(s) k expression
		UNITS FOR 1 MARK: dm ⁶ mol ⁻² s ⁻¹ ✓	4	ALLOW units	s in any order, e.g	ງ. mol ^{–2} dm ⁶ ຄ	 3 ⁻¹

Q	uesti	ion	Answer	Marks	Guidance
2	(b)	(i)	One straight upward line AND starting at 0,0 ✓ 2nd straight upward line starting at 0,0 and steeper AND Steeper line labelled H OR less steep line labelled L ✓	2	ALLOW 1 mark for two upward sloping curves starting at origin AND upper curve labelled H and lower curve labelled L NOTE: ALLOW some leeway for lines starting from origin ALLOW straight line not drawn with ruler, i.e. is a straight line rather than a curve ALLOW similar labelling as long as it is clear which line is which
2	(b)	(ii)	increases ✓	1	
2	(c)		MARK INDEPENDENTLY IH ₂ (g)] Downward curve ✓ Half life is constant ✓	2	ALLOW curve touching x axis ALLOW Two half lives are the same IGNORE 'regular' half life (not necessarily the same)

F325 Mark Scheme June 2015

Q	Question		Answer		Marks	Guidance
2	(d)	(i)	$H_2 + N_2O \rightarrow N_2 + H_2O \checkmark$		1	ONLY correct answer DO NOT ALLOW multiples
2	(d)	(ii)	Steps 1 AND Step 2 together give 2NO + H₂ ✓		1	ALLOW Step 1 AND Step 2 together give species in same ratio as in rate equation ALLOW rate-determining step/slow step for Step 2 ALLOW H ₂ reacts with N ₂ O ₂ which is formed from 2NO NOTE: The response must link Step 1 with Step 2 Steps can be referenced from the species in each step
	1			Total	11	

Q	Question		Answer		Guidance
3	(a)	(i)	5 mol/molecules (of gas) forms 3 mol/molecules (of gas) ✓	1	ALLOW reaction forms fewer moles/molecules IF stated, numbers of molecules MUST be correct IGNORE comments related to ΔG OR disorder (even if wrong)
3	(a)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer =(+)131 (J K ⁻¹ mol ⁻¹), award 2 marks	2	NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. –164 may be missing ALLOW FOR 1 mark –131 wrong final sign 49 wrong sign for 164 79.5 no use of 2 524 no division by 4 38 wrong sign for 186 –75 wrong sign for 206 250 wrong sign for 238 Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g.146 for 164

Q	Question		Answer	Marks	Guidance
3	(a)	(iii)	NOTE: DO NOT ALLOW answer to 3(a)(ii) for $\triangle G$ calculation $\triangle G$ calculation: 2 marks $\triangle G = -234 - 298 \times -0.164 \checkmark$ $= -185 \text{ (kJ mol}^{-1}) \checkmark$ IGNORE units (even if wrong) -185 subsumes 1st mark)	2	ALLOW $\triangle G$ correctly calculated from 3 SF up to calculator value of -185.128 ALLOW working in J, <i>ie</i> : $\triangle G = -234000 - 298 \times -164 \checkmark$ $= -185000 \text{ (J mol}^{-1}) \checkmark$ ALLOW 1 mark for use of 25 OR mixture of kJ and J, e.g. $\triangle G = -234 - 25 \times -0.164 = -229.9$ $\triangle G = -234 - 298 \times -164 = +48638$
			Feasibility comment for negative ΔG answer: 1 mark (Forward) reaction is feasible / spontaneous AND $\Delta G < 0$ / $\Delta H - T\Delta S < 0$ \checkmark	1	ALLOW ECF if calculated value for ΔG is +ve Then 'correct' response for 3rd mark would be not feasible/not spontaneous AND $\Delta G > 0$ / $\Delta H - T\Delta S > 0$
3	(a)	(iv)	$(\Delta G =)$ -234 - 1427 × $\frac{-164}{1000}$ = 0 (calculator 0.028(kJ) OR 28 (J)) \checkmark 2 nd mark only available if 1 st mark has been awarded (Above 1427K/1154°C), reaction is not feasible/ not spontaneous \checkmark OR 1427 K is maximum temperature that reaction happens	2	ALLOW (When $\Delta G = 0$) $T = \frac{-234}{-0.164} = 1427 \text{ K OR } \frac{-234000}{-164} = 1427 \text{ K}$ For 2nd mark, IF ΔG is +ve from (a)(iii) ALLOW ECF for: Above 1427 K, reaction is feasible / spontaneous OR 1427 K is minimum temperature that reaction happens IGNORE LESS feasible IGNORE comparisons of the signs of $T\Delta S$ and ΔH , e.g IGNORE $T\Delta S$ is more negative than ΔH

Qu	Question		Answer	Marks	Guidance	
3	(b)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 57.6 dm³ mol⁻¹, award 6 marks IF answer = 57.6 with incorrect units, award 5 mark	6	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF from incorrect moles of SO ₂ , O ₂ AND SO ₂ ALL three concentrations required for this mark ALLOW ECF from incorrect concentrations NO ECF for numerical value with a square missing For K _c , ALLOW 3 significant figures up to calculator value of 57.64746228 correctly rounded For units, ALLOW mol ⁻¹ dm ³ DO NOT ALLOW dm ³ /mol ALLOW ECF from incorrect K _C expression for both calculation and units COMMON ERRORS 0.0294 3 marks + units mark from SO ₂ = 0.820, O ₂ = 0.410, SO ₃ = 0.180 (mol)	
3	(b)	(ii)	(Pressure) decreases AND fewer molecules/moles ✓	1	For fewer moles, ALLOW 3 mol → 2 mol ALLOW more moles of reactants	

Q	Question		Answer	Marks	Guidance
3	(b)	(iii)	ΔH is negative / '- ' / -ve AND yield of SO ₃ decreases ✓	1	IGNORE exothermic and endothermic
3	(b)	(iv)	IGNORE le Chatelier responses		FULL ANNOTATIONS NEEDED
			Each marking point is independent		
			K _c K _c does not change (with pressure/ concentration) ✓		ALLOW K_c only changes with temperature IF 1 st marking point has been awarded, IGNORE comments about ' K_c decreasing' or ' K_c increasing' and assume that this refers to how the ratio subsequently changes. i.e DO NOT CON 1 st marking point.
			Comparison of conc terms with more O₂ [O₂]/concentration of oxygen is greater OR denominator/bottom of K _c expression is greater ✓		IGNORE O ₂ is greater/increases
			QWC: yield of SO ₃ linked to K_c (Yield of) SO ₃ is greater/increases AND numerator/top of K_c expression is greater/increases \checkmark	3	ALLOW (Yield of) SO₃ is greater/increases AND to reach/restore K _c value ✓
			Total	19	

Q	Question		Answer		Guidance
4	(a)		Proton/H ⁺ donor AND Partially dissociates/ionises ✓	1	
4	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.7(0), award 2 marks [H ⁺] = $\frac{1.00 \times 10^{-14}}{0.5(00)}$ OR 2(.00) × 10 ⁻¹⁴ (mol dm ⁻³) \checkmark pH = -log 2(.00) × 10 ⁻¹⁴ = 13.7(0) \checkmark	2	For pOH method:, ALLOW pOH = -log[OH⁻] = 0.3(0) ✓ (calculator 0.301029995) ALLOW pH = 14 - 0.3 = 13.7 ✓
					ALLOW 13.7 up to calculator value of 13.69897 correctly rounded. ALLOW ECF from incorrect [H ⁺ (aq)] provided that pH >7
4	(c)	(i)	$(K_a =) \frac{[H^+] [C_2 H_5 COO^-]}{[C_2 H_5 COOH]} \checkmark$	1	IGNORE $\frac{[H^+]^2}{[C_2H_5COOH]}$ OR $\frac{[H^+][A^-]}{[HA]}$ ALLOW $[H_3O^+]$ for $[H^+]$ IGNORE state symbols

Qu	estion	Answer		Guidance	
	estion (c) (i	1311011	Marks	ALLOW HA for C_2H_5COOH and A^- for $C_2H_5COO^-$ ALLOW ECF from incorrectly calculated [C_2H_5COOH] ALLOW 1.27 × 10 ⁻³ to calculator value of 1.272792206 ×	
		pH = $-\log 1.27 \times 10^{-3} = 2.9(0) \checkmark$ NOTE: The final two marks are ONLY available from attempted use of K_a AND [C ₂ H ₅ COOH]	3	ALLOW 2.9(0) × 10 ⁻³ to calculator value of 2.895242493 correctly rounded ALLOW use of quadratic equation which gives same answer of 2.90 from 0.120 mol dm ⁻³	

Q	Question		Answer	Marks	Guidance
4	(d)	(i)	$2C_2H_5COOH + Na_2CO_3 \rightarrow 2C_2H_5COONa + CO_2 + H_2O \checkmark$	1	IGNORE state symbols and use of equilibrium sign FOR CO ₂ + H ₂ O ALLOW H ₂ CO ₃ ALLOW C ₂ H ₅ COO ⁻ Na ⁺ OR C ₂ H ₅ COO ⁻ + Na ⁺ BUT BOTH + and – charges must be shown ALLOW NaC ₂ H ₅ COO
4	(d)	(ii)	$H^+ + OH^- \rightarrow H_2O \checkmark$	1	ALLOW $C_2H_5COOH + OH^- \rightarrow C_2H_5COO^- + H_2O$ IGNORE state symbols
4	(e)	(i)	pH = $-\log 1.35 \times 10^{-5} = 4.87 \checkmark$	1	ONLY correct answer DO NOT ALLOW 4.9 (Question asks for 2 DP)
4	(e)	(ii)	Added ammonia C_2H_5COOH removes added NH_3 /alkali/base OR $C_2H_5COOH + NH_3$ / $OH^- \rightarrow$ OR NH_3 /alkali reacts with/accepts H^+ OR $H^+ + NH_3 \rightarrow$ OR $H^+ + OH^- \rightarrow \checkmark$		ALLOW use of HA/weak acid/acid for C₂H₅COOH; ALLOW use of NH₄OH for NH₃
			Equlibrium $\rightarrow C_2H_5COO^-$ OR Equilibrium \rightarrow right \checkmark	2	ALLOW A ⁻ for C ₂ H ₅ COO ⁻ ASSUME that equilibrium applies to that supplied in the question, i.e. IGNORE any other equilibria

Q	uestio	n	Answer	Marks	Guidance
4	(e)	(iii)	CHECK WORKING CAREFULLY AS CORRECT NUMERICAL ANSWER IS POSSIBLE FROM WRONG VALUES		FULL ANNOTATIONS MUST BE USED
			ALLOW HA and A ⁻ throughout Amount of Mg (1 mark) $n(Mg) = \frac{6.075}{24.3} = 0.25(0) \text{ mol} \checkmark$		For <i>n</i> (Mg), 1 mark ALLOW ECF for ALL marks below from incorrect <i>n</i> (Mg) ECF ONLY available from concentrations that have • subtracted 0.50 OR 0.25 from 1 for [C ₂ H ₅ COOH]
			Moles/concentrations(2 marks)		• added 0.50 OR 0.25 to 1 for [C ₂ H ₅ COO ⁻] <i>i.e.</i>
			$n(C_2H_5COOH) = 1.00 - (2 \times 0.25) = 0.50 \text{ (mol)} \checkmark$		For moles/concentration 1 mark (1 mark lost) 1. $n (C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.25$
			$(C_2H_5COO^-) = 1.00 + (2 \times 0.25) = 1.50 \text{ (mol)} \checkmark$		2. $n(C_2H_5COOH) = 0.50$ AND $n(C_2H_5COO^-) = 1.25$ 3. $n(C_2H_5COOH) = 0.75$ AND $n(C_2H_5COO^-) = 1.50$
			[H ⁺] and pH (1 mark) [H +] = $1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ OR 4.5×10^{-6} (mol dm ⁻³)		ALLOW ECF ONLY for the following giving 1 additional mark and a total of 3 marks 1. [H $^{+}$] = 1.35 × 10 ⁻⁵ × $\frac{0.75}{1.25}$ pH = -log 8.1 × 10 ⁻⁶ = 5.09
		pH = $-\log 4.5 \times 10^{-6}$ = 5.35 2 dp required \checkmark	4	1.23	
			NOTE: IF there is no prior working,		2. [H $^{+}$] = $1.35 \times 10^{-5} \times \frac{0.50}{1.25}$ pH = $-\log 5.4 \times 10^{-6}$ = 5.27
			ALLOW 4 MARKS for [H ⁺] = $1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ AND pH = 5.35		3. [H $^{+}$] = 1.35 × 10 ⁻⁵ × $\frac{0.75}{1.50}$ pH = -log 6.75 × 10 ⁻⁶ = 5.17
			IF the ONLY response is pH = 5.35, award 1 mark ONLY		
			Award a maximum of 1 mark (for $n(Mg) = 0.25$ mol) for: pH value from K_a square root approach (weak acid pH) pH value from $K_w / 10^{-14}$ approach (strong base pH)		
			ALLOW alternative approach based on Henderson–Hasselbalch ed $pH = pK_a + log \frac{1.5}{0.5} \text{ OR } pK_a - log \frac{0.5}{1.5} \qquad pH = 4.5$	'	final 1 mark $= 5.35 \checkmark \qquad \text{ALLOW}_{-\log} K_{a} \text{ for } pK_{a}$
			Total	16	

Question Answer	Marks	Guidance
5 (a) (i)	4	Correct species AND state symbols required for each marks ALLOW e for e TAKE CARE: In top left box, e may be in centre of response and more difficult to see than at end. There is only ONE correct response for each line From the gaps in the cycle, there is NO possibility of any ECF

Q	Question		Answer	Marks 2	Guidance IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal,
5	(a)	(ii) (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓ ✓			
			Award marks as follows.		substance, solid
			1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only		IGNORE : $Fe^{2+}(g) + 2I^{-}(g) \longrightarrow Fel_{2}(s)$ (Part of cycle)
			DO NOT ALLOW 2nd mark without 1st mark		ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓
			DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance		ALLOW 1 mark for $\Delta H_{\rm f}$ definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark

Q	Question		Answer	Marks	Guidance	
5	(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2473 (kJ mol ⁻¹) award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors	
5	(b)	(i)	Fe ²⁺ : $1s^22s^22p^63s^23p^63d^6 \checkmark$ Br ⁻ : $1s^22s^22p^63s^23p^63d^{10}4s^24p^6 \checkmark$	2	e.g. one transcription error: e.g. +461 instead of +416 ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ ALLOW 1s ² written after answer prompt (<i>ie</i> 1s ² twice) ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ₁ ALLOW for Fe ²⁺ 4s ⁰ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a	

Q	Question		Answer	Marks	Guidance	
5	(b)	(ii)			FULL ANNOTATIONS NEEDED	
			With Cl ₂ AND Br ₂ AND l ₂ products are Fe ²⁺ (AND halide ion) FeCl ₂ AND FeBr ₂ AND Fel ₂ ✓		ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants	
			OR Evidence that two electrode potentials have been compared for at least ONE reaction, ✓ e.g. Fe –0.44 AND Cl₂ +1.36 e.g. Iron has more/most negative electrode potential	3	ALLOW response in terms of positive 'cell reactions', e.g Fe + Cl ₂ \rightarrow Fe ²⁺ + 2Cl ⁻ E = (+)1.80 V IGNORE comments about reducing and oxidising agents and electrons	
			With Cl₂ AND Br₂, products are Fe³+ (AND halide ion) FeCl₃ AND FeBr₃ ✓	3		
5	(c)		BRTH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks		ALLOW correct multiples throughout ALLOW equilibrium signs in all equations	
			1st mark for ALL CORRECT species e.g.: $Fe^{2^+} + NO_3^- + H^+ \rightarrow Fe^{3^+} + NO + H_2O$		For 1st mark, IGNORE e ⁻ present	
			2nd mark for CORRECT balanced equation $3Fe^{2+} + NO_3^- + 4H^+ \rightarrow 3Fe^{3+} + NO + 2H_2O \checkmark\checkmark$			
			Reaction 2: 1 mark ${}_{2}O)_{6}]^{2^{+}}$ + NO → [Fe(H ₂ O) ₅ NO] ²⁺ + H ₂ O ✓	3	Check carefully for correct charges	
	ı	1	[Fe(H Total	16		

Q	Question		Answer		
6	(a)		E° redox system Most negative E C Least negative D	1	ALL 3 correct for 1 mark
6	(b)	(i)	pH = 0 ✓	1 G	uidance
6	(b)	(ii)	H redox system is more negative (e.g. has a more –ve <i>E</i> OR less +ve <i>E</i> OR is –ve electrode) OR H redox system releases electrons (May be in equation, e.g. H ₂ → 2H ⁺ + 2e ⁻) ✓ Equilibrium shifts to increase [H ⁺] OR H ⁺ OR standard hydrogen equation shifts to increase [H ⁺] OR H ⁺ ✓	2	ALLOW ORA, <i>ie</i> Ag redox system (D) has more positive <i>E</i> / less negative <i>E</i> ALLOW equilibrium sign IGNORE H is more reactive ORA IGNORE direction of equilibrium shift
6	(b)	(iii)	H_{2+} $2Ag^{+} \rightarrow 2Ag + 2H^{+} \checkmark$	1	ALLOW multiples e.g. ½H₂ + Ag⁺ → Ag + H⁺ State symbols NOT required ALLOW equilibrium sign
6	(c)	(i)	$^ H_2O$ \rightleftharpoons HCN OH $^-$ AND Base ₊ 2 Acid 1 Acid 2 ₊ Base 1 ✓ CN	1	State symbols NOT required ALLOW CNH and HO ⁻ (i.e. any order) ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are.

Q	uesti	on	Answer	Marks	Guidance
6	(c)	(ii)	H ⁺ reacts with CN ⁻ OR HCN forms OR equation: H ⁺ + CN ⁻ → HCN (ALLOW ⇒) OR CN ⁻ accepts a proton/H ⁺ OR equilibrium shifts right AND CN ⁻ is removed ✓	1	ALLOW Acid reacts with/removes OH ⁻ ions (to form HCN) ALLOW CNH (i.e. any order) IGNORE other equilibrium comments
6	(d)	(i)	Fuel reacts with oxygen/oxidant to give electrical energy/voltage ✓	1	ALLOW named fuel. e.g. hydrogen/H ₂ ; ethanol; methanol, etc ALLOW fuel cell requires constant supply of fuel AND oxygen/an oxidant OR fuel cell operates continuously as long as a fuel AND oxygen/an oxidant are added IGNORE 'reactants' 'products' and comments about pollution and efficiency
6	(d)	(ii)	ethanol is a liquid OR is less volatile OR ethanol is easier to store/transport/stored more safely OR hydrogen is explosive/more flammable OR ethanol has more public/political acceptance ✓	1	Assume that 'it' refers to ethanol ALLOW ORA throughout IGNORE ethanol has a higher boiling point IGNORE H ₂ is a gas IGNORE 'produces no CO ₂ ' OR less pollution IGNORE comments about efficiency IGNORE comments about biomass and renewable
6	(d)	(iii)	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiples ALLOW C ₂ H ₆ O for formula of ethanol IGNORE state symbols
6	(d)	(iv)	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiples, e.g. $3O_2 + 12H^+ + 12e^- \rightarrow 6H_2O$ $_2 + 2H^+ + 2e^- \rightarrow H_2O$ ALLOW e (<i>ie</i> no $4/2$ ign) ALLOW $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ OR $3O_2 + 6H_2O + 12e^- \rightarrow 12OH^-$ IGNORE state symbols

Q	Question			Answer	Marks	Guidance
6	(d)	(v)	oxidation: C from –2 to +4	'+' sign not required ✓		ALLOW 2– and 4+ ALLOW $C^{2-} \rightarrow C^{4+}$
			reduction: O from 0 to -2		2	ALLOW 0 and 2– ALLOW $O^0 \rightarrow O^{2-}$ ALLOW 1 mark if correct oxidation numbers shown for BOTH C and O but wrong way around (ie C on reduction line and O on oxidation line) IGNORE O_2 reduced IGNORE any reference to electron transfer (not in question)
						(not in question)
				Total	13	

Q	uestion	Answer		Guidance	
7	(a)	Equations can be in either order		ALLOW multiples throughout IGNORE state symbols	
		$Na_2O + H_2O \rightarrow 2NaOH \checkmark$		ALLOW Na ₂ O + H ₂ O \rightarrow 2Na + 2OH	
				DO NOT ALLOW equations with uncancelled species. e.g. $Na_2O + 2H_2O \rightarrow 2NaOH + H_2O$	
		$NaFeO_{2} + 2H_{2}O \rightarrow Fe(OH)_{3} + NaOH \checkmark$	2	ALLOW 2NaFeO _{2 +} $H_2O \rightarrow Fe\ _2O_3 + 2NaOH$ OR $_2 + H_2O \rightarrow Fe\ _2O_3 + 2Na^+ + 2OH^- \checkmark$	

2NaFeO

Question	Answer	Marks	Guidance
7 (b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 33.7%, award 6 marks. IF there is an alternative answer, check to see if there is any ECF credit possible using working below amount $S_2O_3^{2-}$ used = $0.1000 \times \frac{25.50}{1000}$ = 2.550×10^{-3} (mol) \checkmark amount $I_2 = 2.550 \times 10^{-3} \div 2$		FULL ANNOTATIONS MUST BE USED IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step Working: at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49
	1.275 × 10 ⁻³ (mol) \checkmark amount CrO_4^{2-} 2/3 × 1.275 × 10 ⁻³ OR 1.275 × 10 ⁻³ ÷ 1.5 = 8.5(00) × 10 ⁻⁴ (mol) \checkmark amount CrO_4^{2-} in original 1000 cm ³ = 40 × 8.5(00) × 10 ⁻⁴		ECF answer above ÷ 1.5 ECF answer above × 40
	= 3.4(00) × 10 ⁻² mol \checkmark Mass of Cr/Cr ³⁺ in ore = 52.0 × 3.4(00) × 10 ⁻² g 1.768 g \checkmark Fercentage Cr in ore = $\frac{1.768}{5.25}$ ×100 = 33.7% \checkmark MUST be to one decimal place (in the question)	6	ECF answer above × 52.0 IMPORTANT: The last two marks are ONLY available by using 52.0 for Cr Common ECFs: 0.8% x 40 missing 5 marks (scaling error) 0.84% x 40 missing 4 marks (scaling error and 2 DP) 33.68% 5 marks (2 DP) 16.8% 5 marks (divide Cr somewhere by 2) 144.9%; 72.5% 4 marks (Final 2 marks unavailable)

Question	Answer	Marks	Guidance
(c)	Overall: ${}_{4}^{2-} + 3I^{-} + 4H_{2}O \rightarrow Cr^{3+} + 1\frac{1}{2}I_{2} + 8OH^{-}\checkmark$ CrO		ALLOW multiples and equilibrium signs throughout IGNORE state symbols throughout e.g. $2CrO_4^{2^-} + 6l^- + 8H_2O \rightarrow 2Cr^{3^+} + 3l_2 + 16OH^-$ ALLOW equation using H ⁺ . i.e. $CrO_4^{2^-} + 3l^- + 8H^+ \rightarrow Cr^{3^+} + 1\frac{1}{2}l_2 + 4H_2O$ OR $2CrO_4^{2^-} + 6l^- + 16H^+ \rightarrow 2Cr^{3^+} + 3l_2 = 8H_2O$
	Half equations: ${}_{4}^{2^{-}} + {}_{4}^{2}O + 3e^{-} \rightarrow Cr^{3^{+}} + 8OH^{-}\checkmark$ CrO ${}_{2l^{-}} \rightarrow {}_{12} + 2e^{-}\checkmark$	3	ALLOW CrO_4^{2-} half equation using H^+ . i.e. $_4^{2-} + 8H^+ + 3e^- \rightarrow Cr^{3+} + 4H_2O$
	Total	11	

GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2016

Question	Answer	Marks	Guidance
1 (a)	IGNORE any charges shown within complexes (treat as rough working) Formulae [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ ✓	3	For charges, ALLOW +2 and -2 Square brackets required , i.e. DO NOT ALLOW Cu(NH ₃) ₄ (H ₂ O) ₂ ²⁺ ALLOW Ligands in any order
	[CuCl₄] ^{2−} ✓		ALLOW CuCl ₄ ²⁻ i.e. no brackets OR Cu(Cl) ₄ ²⁻
	Colours blue AND yellow ✓ Mark independently of formulae		For CuCl ₄ ²⁻ , ALLOW green–yellow OR yellow–green DO NOT ALLOW green For [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ DO NOT ALLOW pale blue, light blue
			DO NOT ALLOW precipitate with blue OR yellow
1 (b) (Donates two electron pairs to a metal ion/metal/Cu²+ AND forms two coordinate bonds to a metal ion/metal/Cu²+ ✓	1	ALLOW lone pairs for electron pairs ALLOW molecule/atom/ion/substance for 'ligand' ALLOW dative (covalent) bonds for coordinate bonds ALLOW transition element for metal Two is needed once only e.g. Donates two electron pairs to form coordinate bonds to a metal ion/metal/Cu ²⁺ Donates electron pairs to form two coordinate bonds to a metal ion/metal/Cu ²⁺ DO NOT ALLOW donates two electron pairs
			to a metal ion/metal/Cu ²⁺

Q	uesti	on	Answer	Marks	Guidance
1	(b)	on (ii)	0	OH ₂ OH ₂ OH ₂ OH ₂	Guidance FULL ANNOTATIONS MUST BE USED 2 marks: one for each correct isomer ✓✓ TAKE CARE: structures may be in different orientations and in different order IF BOTH isomers are 'correct', but O connectivity wrong, AWARD 1 mark for both structures
			H ₂ O _{1/11,11} , Cu H ₂ O O O O O O O O O O O O O O O O O O O	O CU O O O	Check H ₂ O ligands carefully for connectivity ALLOW H ₂ O reversed shown as -O ₂ H IGNORE charges (anywhere) NOTE: For each structure, ALL O atoms must be shown AND For (COO ⁻) ₂ , ALLOW skeletal, structural or displayed formula DO NOT ALLOW structures such as those shown below
			cis ✓ trans optical ✓	cis trans ✓ optical	1 mark: for whole of 2nd row for whole of 'Type' row i.e. (cis AND optical) AND trans only

Q	Question		Answer	Marks	Guidance
1	(b)	(iii)	CuC₄H₄O₁₀²- Formula ✓ 2- charge ✓ MARK formula and charge INDEPENDENTLY	2	Empirical formula essential, e.g. DO NOT ALLOW Cu(COO) ₂ (H ₂ O) ₂ for formula mark ALLOW any order of elements in formula ALLOW –2 for charge
		I	Total	9	

Question	Answer		Guidance
2 (a)	<pre>initial rates data (3 marks) NOTE: Each comparison MUST relate to the actual change in concentration/rate in the experiments EXPTS H₂O₂: [H₂O₂] × 2</pre>	3	FULL ANNOTATIONS MUST BE USED THROUGHOUT, • Square brackets NOT REQUIRED around H_2O_2 , H^+ and I^- • ALLOW 'doubles' for × 2; quadruples for × 4 ALLOW direct comparison of concentrations and rate, e.g. $[H_2O_2]$ changes by $\frac{0.0020}{0.0010} = 2$, rate changes by $\frac{1.14 \times 10^{-5}}{5.70 \times 10^{-6}} = 2$ AND 1 st order (Expts 1 & 2) DO NOT ALLOW I_2 for I^- IGNORE $[H^+]$ for Expts 3 & 4
	Calculation of rate constant (3 marks), EITHER $k = \frac{5.70 \times 10^{-6}}{0.0010 \times 0.20} \text{ OR } 2.85 \times 10^{-2} \text{ OR } 0.0285 \text{ OR } 0.029 \checkmark$ $k = 2.9 \times 10^{-2} \checkmark \text{ (2 SF in standard form)}$ Subsumes previous mark if no working shown $dm^3 \text{ mol}^{-1} \text{ s}^{-1} \checkmark$	3	IGNORE working DO NOT ALLOW 0.03 ALLOW ECF from error in powers of 10 ONLY e.g. 2.9×10^{-3} by use of 0.010 instead of 0.0010 DO NOT ALLOW 2.90 × 10^{-2} (3 SF) OR 29 × 10^{-3} (Not standard form) ALLOW mol ⁻¹ , dm ³ and s ⁻¹ in any order, e.g. mol ⁻¹ dm ³ s ⁻¹

Qı	Question		Answer	Marks	Guidance
2	(b)		H ⁺ ions are consumed/used up OR H ⁺ ions are in the (overall) equation ✓	1	ALLOW H ⁺ is not regenerated/reformed ALLOW H ⁺ is a reactant but not a product ALLOW 'it' for H ⁺ IGNORE H ⁺ is not in the rate equation/does not affect rate IGNORE does not take part in rate-determining step
2	(c)	(i)	The slowest/slow step ✓	1	ALLOW step that takes the longest time
2	(c)	(i i)	NO ECF from incorrect rate equation Principles H ₂ O ₂ and must be the reactants in 1st step 2nd mark only to be awarded if 1st mark scored Step 4 is independent Reactants of Step 1 as H ₂ O ₂ + 1 mark Step 1: H ₂ O ₂ + √ Products of Step 1 AND all of Step 2 1 mark Step 1 → Step 1 → Step 2: AND Step 2: Step 4 (Independent mark) 1 mark H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + H +	3	IGNORE state symbols Elements can be in any order in formulae Alternatives for 2nd mark Step 1: \rightarrow HIO + OH ⁻ AND Step 2: H ⁺ + OH ⁻ \rightarrow H ₂ O \checkmark Step 1: \rightarrow H ₂ O ₂ I ⁻ AND Step 2: H ⁺ + H ₂ O ₂ I ⁻ \rightarrow HIO + H ₂ O \checkmark Other possibilities, contact TL ALLOW $2H^+ + 2OH^- \rightarrow 2H_2O$ $H_3O^+ + OH^- \rightarrow 2H_2O$
			Total	11	

Question	Answer		Guidance
3 (a)	(enthalpy change for) 1 mole of gaseous ions OR 1 mole of hydrated ions/aqueous ions ✓ gaseous ions forming aqueous/hydrated ions ✓	2	 one mole can be stated just once EITHER with gaseous ions OR with aqueous ions, e.g. 1 mole of gaseous ions forms hydrated ions/aqueous ions Gaseous ions form 1 mole of hydrated ions/aqueous ions ALLOW 1 mol for 1 mole IGNORE 'energy released' OR 'energy required' For 2nd mark IGNORE gaseous ions are hydrated IGNORE gaseous ions dissolve in water Particles formed not stated ALLOW 1 mark for: 1 mole of gaseous <u>IONS</u> forms aqueous/hydrated atoms/particles/ molecules

Q	uestic	on	Answer	Marks	Guidance
3	(b)	(i)	4 marks for species AND state symbols on all 4 energy levels (including added energy level) $ 2K^{+}(g) + SO_{4}^{2-}(g) \checkmark $ $ 2K^{+}(aq) + SO_{4}^{2-}(g) \checkmark $ $ 2K^{+}(aq) + SO_{4}^{2-}(g) \checkmark $ $ 2K^{+}(aq) + SO_{4}^{2-}(aq) \checkmark $ $ 2K^{+}(aq) + SO_{4}^{2-}(aq) \checkmark $ $ 4 $	5	IF extra energy level is above top line OR below bottom line, DO NOT ALLOW mark for species on this line. See APPENDIX ALLOW C and D with associated labels, the other way round: 2K+(g) + SO ₄ ²⁻ (g) D 2K+(g) + SO ₄ ²⁻ (aq) (2 *) C OR (2 *) -320 2K+(aq) + SO ₄ ²⁻ (aq) B OR 24 State symbols are essential IF no extra energy level is shown with C and D combined forming 2K+(aq) + SO ₄ ²⁻ (aq), No mark for the extra energy level with species No mark for labels as C and D are combined Therefore 3 max for species on energy levels provided
3	(b)	(ii)	ΔH (hydration) $SO_4^{2-} = -1099$ (kJ mol ⁻¹) \checkmark	1	ONLY correct answer

Question	n	Answer	Marks	Guidance
3 (c)	(i)	Aqueous particles are more disordered than solid (particles) OR Solid particles are more ordered than aqueous (particles) ✓	1	For particles, ALLOW ions DO NOT ALLOW molecules/atoms ALLOW 'When the state changes from solid to aqueous, disorder increases' For more disordered, ALLOW less ordered/ more freedom/ more ways of arranging energy/ more random For aqueous particles, ALLOW particles in solution IGNORE dissolved
3 (c)	(ii)	Calculation (2 marks) $ \Delta G = 24 - (298 \times 0.225) \text{ OR } 24 - 67.05 \qquad (in kJ) $ OR $24000 - (298 \times 225) \text{ OR } 24000 - 67050 \qquad (in J) $ ✓ Calculation of ΔG (IGNORE UNITS) $ \Delta G = -43 \text{ (kJ mol}^{-1}) \text{ OR } -43000 \text{ (J mol}^{-1}) $ $ Subsumes 1st calculation mark $ Reason for solubility $ \text{Calculated value of } \Delta G \text{ that is negative} $ AND $ \text{Statement that:} } \Delta G \text{ is negative OR } \Delta G < 0 \text{ OR } -43 < 0 $ OR $\Delta H - T\Delta S < 0 \text{ OR } T\Delta S > \Delta H $	3	Contact TL if solely entropy approach rather than ΔG ALLOW –43.1 OR –43.05 (calculator value) ALLOW 1 calculation mark (IGNORE units) for –67.(026) OR –67026 ECF from 225 instead of 0.225 18.(375) OR +18.375 ECF from 25 instead of 298 ALLOW other ECF from ONE error in 1st step of calc, e.g. incorrect value for ΔH such as –1099 from 3bii \rightarrow –1166.05 TAKE CARE that same units used for ΔH and ΔS NO reason mark from a +ve value of ΔG
		Total	12	

Question	Answer	Marks	Guidance
Question 4 (a) 4 (b)	Iodine is non-polar OR Iodine does not form H bonds with water \checkmark	Marks 1	Guidance IGNORE iodine is slightly polar IGNORE 'cannot bond to water' (too vague) IGNORE 'Lack of a lone pair' IGNORE 'inability to induce a dipole FULL ANNOTATIONS MUST BE USED Throughout, at least 3SF but ALLOW absence of trailing zeroes e.g. for 9.80×10^{-3} ALLOW 9.8×10^{-3} FOR I¯ 0.4702 , ALLOW $0.47(0)$ (mol dm ⁻³) still →104 for calc State symbols not required in K_c expression ALLOW ECF from incorrect concentrations Any ECF value MUST be to 3 SF for K_c value COMMON ERRORS $104.2 \rightarrow 104.2109741$ (calc) > 3 SF 2 marks + units $521 no \times 5 for concs$ 2 marks + units $521.1 \rightarrow 521.0548703$ as above and > 3SF 1 mark + units $2610 \div 5 instead of \times 5 for concs$ 2 marks + units $9.60 \times 10^{-3} K_c upside down, correct concs$ 1 mark + units
			NOTE : With K_c upside down, units become mol dm ⁻³ by ECF

Qu	estion	Answer	Marks	Guidance
4	(c)	Ag ⁺ /silver nitrate reacts with I ⁻ to form Agl/silver iodide OR Ag ⁺ + I ⁻ → Agl ✓ yellow precipitate/solid forms ✓ Equilibrium 2 shifts to the left ✓ Equilibrium 1 shifts to left AND I ₂ comes out of solution/less I ₂ dissolves/ I ₂ precipitates/black solid /grey solid /violet solid ✓	4	DO NOT ALLOW cream OR cream—yellow ALLOW just 'yellow' if supported by AgI(s) somewhere
4	(d)	in all equations ALLOW equilibrium signs IGNORE state symbols Reaction 1: 1 mark $2I_2 + 5O_2 \rightarrow 2I_2O_5 \checkmark$	3	FULL ANNOTATIONS MUST BE USED
		Reaction 2: 2 marks 1st mark: ALL CORRECT species e.g.: $I_2 + OH^- \rightarrow I^- + IO_3^- + H_2O$ 2nd mark for CORRECT balanced equation $3I_2 + 6OH^- \rightarrow 5I^- + IO_3^- + 3H_2O$ $\checkmark\checkmark$		For 1st mark, IGNORE e ⁻ present ALLOW species/equation with NaOH or KOH, e.g. $3I_2 + 6NaOH \rightarrow 5I^- + IO_3^- + 3H_2O + 6Na^+$ $3I_2 + 6NaOH \rightarrow 5NaI + NaIO_3 + 3H_2O$ ALLOW Species: $I_2 + OH^- \rightarrow I^- + IO_2^+ + H_2O \checkmark$ OR Equation: $3I_2 + 4OH^- \rightarrow 5I^- + IO_2^+ + 2H_2O \checkmark \checkmark$ Species: $I_2 + OH^- \rightarrow I^- + IO_3^+ + H_2O \checkmark \checkmark$ OR Equation: $3I_2 + 2OH^- \rightarrow 5I^- + IO_3^{3+} + H_2O \checkmark \checkmark$
	<u> </u>	Total	12	

Q	Question		Answer	Marks	Guidance
5	(a)		$(K_{a} =) \frac{[H^{+}][NO_{2}^{-}]}{[HNO_{2}]} \checkmark$	1	IGNORE $\frac{[H^+]^2}{[HNO_2]}$ OR $\frac{[H^+][A^-]}{[A]}$
			IGNORE state symbols		ALLOW H ₃ O ⁺ for H ⁺
					Square brackets required
5	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.12 award 2 marks	2	
			$[H^+] = \sqrt{K_a} [HNO_2] = 7.502 \times 10^{-3} \text{ (mol dm}^{-3}) \checkmark$		ALLOW intermediate value from 3 SF (7.50 up to calculator value of 7.501999733 \times 10 ⁻³
			pH = $-\log 7.502 \times 10^{-3} = 2.12 \checkmark$ pH to 2 DP		ALLOW 1 mark for 2.1 OR answer > 2 DP (i.e. not 2 DP)
					ONLY ALLOW pH mark by ECF if K_a AND 0.120 used and AND pH <7
					COMMON ERRORS (MUST be to 2 DP)
					pH = 4.25 No square root:1 mark $[H^+] = (4.69 \times 10^{-4} \times 0.120) = 5.628 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$ pH = $-\log 5.628 \times 10^{-5} = 4.25 \checkmark$
					pH = 0.92 no K_a used: zero marks pH = $-\log 0.120 = 0.92$
					pH = 13.08 K _w /pOH used: zero marks
					pH = $-\log \frac{1.00 \times 10^{-4}}{0.120}$ OR 14 – $\log 0.120 = 13.08$

Q	uesti	on	Answer	Marks	Guidance
5	(c)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.43, AWARD 4 marks	4	FULL ANNOTATIONS MUST BE USED
			Expression: $K_a \times acid/base\ ratio$ Use of $K_a \times \frac{[HNO_2]}{[NO_2^-]}$ OR $4.69 \times 10^{-4} \times \frac{[HNO_2]}{[NO_2^-]}$ \checkmark		ALLOW just $K_a \times \frac{\text{acid}}{\text{salt}}$ expression
			Using correct concs/mol in expression $[H^+] = 4.69 \times 10^{-4} \times \frac{0.0400}{0.0500} \checkmark \text{ Subsumes previous mark}$		Mark by ECF from $4.69 \times 10^{-4} \times \frac{[NO_2^-]}{[HNO_2]}$ inverted expression
			Calculation of [H ⁺] [H ⁺] = 3.752×10^{-4} (mol dm ⁻³) \checkmark pH to 2 DP (From 3.42573717)		Mark by ECF from incorrect [HNO ₂] and [NO ₂ ⁻] ONLY award marks for a pH calculation via K_a AND using concentrations/mol derived from the question
			$pH = -log \ 3.752 \times 10^{-4} = 3.43 \ \checkmark$		DO NOT ALLOW final pH mark by ECF if pH > 7
			NO marks are available using K_a square root approach (weak acid pH) K_w /10 ⁻¹⁴ approach (strong base pH)		COMMON ERRORS BUT CHECK WORKING pH = 2.82 3 marks initial concs: 0.200 and 0.0625
			ALLOW alternative approach based on Henderson– Hasselbalch equation (ALLOW $-\log K_a$ for pK_a) $pH = pK_a + \log \frac{[NO_2]}{[HNO_2]}$ OR $pK_a - \log \frac{[HNO_2]}{[NO_2]}$		pH = 3.23 3 marks 0.0400 and 0.0500 acid/base ratio inverted pH = 3.83 2 marks initial concs: 0.200 and 0.0625 and ratio inverted
			pH = p K_a + log $\frac{0.0500}{0.0400}$ OR p K_a - log $\frac{0.0400}{0.0500}$ \checkmark pH = p K_a + 0.097 \checkmark		pH = 2.73 3 marks Incorrect $[NO_2^-] = 0.01$ and correct $[HNO_2] = 0.04$ pH = 4.03 3 marks
			pH = 3.329 + 0.097 = 3.43 ✓		correct $[NO_2^-] = 0.05$ and incorrect $[HNO_2] = 0.01$

Q	Question		Answer	Marks	Guidance
5	(c)	(ii)	Equilibrium: 1 mark $HNO_2 \Rightarrow H^+ + NO_2^- \checkmark$ (ignore state symbols)	4	FULL ANNOTATIONS MUST BE USED IGNORE HA
			Control of pH: 2 marks (QWC) Added HCI NO₂⁻ reacts with added acid/HCI/H⁺ OR NO₂⁻ + H⁺ → OR more HNO₂ forms ✓ Added NaOH		QWC: Quality of written communication DO NOT ALLOW HA and A ⁻ for HNO ₂ and NO ₂ ⁻ IGNORE just acid reacts with added alkali
			HNO ₂ reacts with added alkali/NaOH/OH ⁻ OR HNO ₂ + OH ⁻ \rightarrow OR more NO ₂ ⁻ forms OR H ⁺ reacts with added alkali/NaOH OR H ⁺ + OH ⁻ \rightarrow \checkmark Equilibrium shift:		IGNORE just conjugate base/salt/base reacts with added acid DO NOT ALLOW salt/base reacts with added acid
			1 mark for shifts in HNO₂ ⇒ H ⁺ + NO₂ ⁻ (See 1st mark) Equilibrium for added acid → left AND Equilibrium for added alkali → right ✓ (QWC)		AWARD 'shift mark' ONLY if correct equilibrium equation has been given IGNORE any other equilibria in response

Q	Question		Answer	Marks	Guidance
5	(d)	(i)	Endothermic AND K_w increases with temperature OR	1	Endothermic and reason required for the mark
			Endothermic AND dissociation increases with temperature OR Endothermic AND (dissociation) involves breaking bonds ✓		ALLOW Endothermic AND increasing temperature shifts equilibrium/reaction to the right/favours forward reaction
			(* ************************************		DO NOT ALLOW breaking hydrogen bonds
					OR intermolecular bonds/forces
5	(d)	(ii)	OH concentration $[OH^{-}] = \frac{9.311 \times 10^{-14}}{1.00 \times 10^{-7}} = 9.311 \times 10^{-7} \text{ (mol dm}^{-3}) \checkmark$	2	H^+ OR OH ⁻ concentration (neutral pH) [H ⁺] = [OH ⁻] = √(9.311 × 10 ⁻¹⁴) = 3.05 × 10 ⁻⁷ (mol dm ⁻³) ✓
			Explanation (dependent on 1st mark) 9.311 × 10 ⁻⁷ > 1.(00) × 10 ⁻⁷ OR [OH⁻] > [H⁺] OR OH⁻ in excess AND Alkaline ✓		Explanation (dependent on 1st mark) $pH = -log (3.05 \times 10^{-7}) = 6.5 \rightarrow 6.515501837 \text{ (calc)}$ AND Alkaline \checkmark
5	(d)	(iii)	pK _w = 13.03 ✓	1	ONLY correct answer

Question	Answer	Marks	Guidance
5 (d) (iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 10.76, award 3 marks	3	FULL ANNOTATIONS MUST BE USED
	Dilution 1 mark $[OH^{-}(aq)] = [NaOH(aq)] = \frac{0.0270}{5} = 0.00540 \text{ (mol dm}^{-3}) \checkmark$ $[H^{+}] 1 \text{ mark}$ $[H^{+}(aq)] = \frac{9.311 \times 10^{-14}}{0.00540} = 1.72 \times 10^{-11} \text{ (mol dm}^{-3}) \checkmark$ $Calculator: 1.724259259 \times 10^{-11}$ $pH 1 \text{ mark}$ $pH = -log 1.72 \times 10^{-11} = 10.76 \checkmark$ $$		ALLOW dilution AFTER calculation of [H ⁺ (aq)] i.e. original [H ⁺] = $\frac{9.311 \times 10^{-14}}{0.0270}$ = 3.45 × 10 ⁻¹² (mol dm ⁻³) ✓ After dilution, [H ⁺] = 3.45 × 10 ⁻¹² × 5 = 1.72 × 10 ⁻¹¹ (mol dm ⁻³) ✓ pH = -log 1.72 × 10 ⁻¹¹ = 10.76 ✓ ALLOW ECF from incorrect [H ⁺ (aq)] provided that pH > 7
	Total	18	→ 12.46 from 0.00270, etc may give 2 marks by ECF

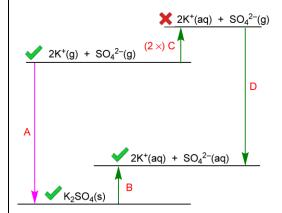
Q	uestic	on	Answer	Marks	Guidance
6	(a)		Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Units essential Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm ⁻³ AND pressure of 100 kPa OR 10 ⁵ Pa OR 1 bar ✓	2	For e.m.f., ALLOW voltage OR potential difference/p.d. OR electrode/reduction/redox potential ALLOW e.m.f. of a cell ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) DO NOT ALLOW hydrogen fuel cell ALLOW 1M OR 1 mol/dm³ DO NOT ALLOW 1 mol OR 1 mole ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
6	(b)	(i)	Complete circuit with voltmeter AND labelled salt bridge linking two half-cells ✓ Cu electrode in Cu²+ ✓ Pt electrode in V²+ AND V³+ ✓ Cu shown as + AND Pt shown as - ✓ electrons in wire AND ions in salt bridge ✓ On diagram or stated	5	Half cells can be drawn in either order Half cells must show electrodes dipping into solutions ALLOW small gaps in circuit DO NOT ALLOW half-cell with H ₂ added IGNORE any stated concentrations IGNORE 'anode' and 'cathode' In salt bridge, ALLOW any stated ion that may be present, e.g. K ⁺ , NH ₄ ⁺ , NO ₃ ⁻ , Cu ²⁺ , V ²⁺ , V ³⁺ IGNORE direction of travel of ions and electrons. ALLOW Cu half cell as + AND V half cell as –

Q	uestic	on	Answer	Marks	Guidance
6	(b)	(ii)	0.60 OR 0.6 (V) ✓	1	IGNORE any sign
6	(c)		Definitions: 1 mark Oxidising agent removes/accepts/gains electrons OR	6	FULL ANNOTATIONS MUST BE USED
			increases oxidation number (of another species) AND Reducing agent adds/donates/loses electrons OR		ALLOW oxidising agent decreases its oxidation number AND reducing agent increases its oxidation number
			decreases oxidation number (of another species) ✓		 IGNORE oxidising agent oxidises/is reduced OR reducing agent reduces/is oxidised In equations, IGNORE state symbols (even if incorrect)
			Oxidising agent: 2 marks Cr^{3+} oxidises Al OR Cr^{3+} acts as oxidising agent AND $3Cr^{3+} + Al \rightarrow 3Cr^{2+} + Al^{3+} \checkmark$		 ALLOW in equation IF more than one equation shown for Cr³+ as oxidising agent, CON and zero marks for 2 oxidising agent marks IGNORE equations with Cr²+ as reactant
			Explanation (dependent on Cr³+ oxidising Al above) E of redox system 2 (Cr³+/Cr²+) is more positive /less negative (than E of system 1 (Al³+/Al))		Explanations MUST be in terms of positive/negative: IGNORE 'higher' <i>E</i> OR 'greater'
			ORA, i.e. in terms of 1 being more negative (than 2) ✓		ALLOW E_{cell} = +1.25 V (+ sign required)
			Reducing agent: 3 marks Cr^{3+} reduces $FeO_4^{2-}(/H^+) \checkmark$ $2Cr^{3+} + 2FeO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + 2Fe^{3+} + H_2O \checkmark$ Explanation (dependent on Cr^{3+} reducing FeO_4^{2-} above)		IF more than one equation shown for Cr^{3+} as a reducing agent, CON and zero marks for 3 reducing agent marks IGNORE equations with Cr^{2+} as reactant
			<i>E</i> of redox system 5 ($Cr_2O_7^{2-}/Cr^{3+}$) is less positive/ more negative (than <i>E</i> of system 6 (FeO_4^{2-}/Fe^{3+})) ORA , i.e. in terms of 6 being more positive (than 5) \checkmark		Explanations MUST be in terms of positive/negative: IGNORE 'higher' <i>E</i> OR 'greater'
	<u> </u>		Total	14	ALLOW $E_{cell} = +0.87 \text{ V (+ sign required)}$

Q	Question		Answer		Guidance
7	(a)	(i)	IGNORE any charges shown within complexes (treat as rough working) Complex ion C: [Ni(H₂O) ₆] ²⁺ ✓	3	ALLOW +2 and –2 for charges Square brackets required
			Solid D: Ni(OH)₂ ✓		ALLOW Ni(H ₂ O) ₄ (OH) ₂ (H ₂ O) ₄ and (OH) ₂ in any order IGNORE any square brackets
			Complex ion E: [Ni(CN) ₄] ^{2−} ✓		Square brackets required
					TAKE CARE for round brackets within complex ion, i.e. (H ₂ O), (OH) and (CN)

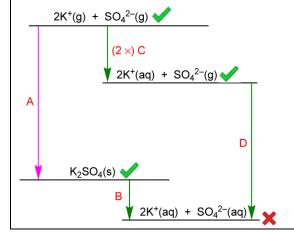
Q	Question		Answer	Marks	Guidance
7	(a)	(ii)	Mark independently of 7(a)(i) ALLOW +2 and −2 for charges IGNORE any charges shown within complexes (treat as rough working) Ni ²⁺ + 2OH ⁻ → Ni(OH) ₂ ✓	4	For equations: IGNORE state symbol (even if wrong) Square brackets not required for Ni(OH) ₂ ALLOW [Ni(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow [Ni(H ₂ O) ₄ (OH) ₂] + 2H ₂ O ALLOW [Ni(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow Ni(OH) ₂ + 6H ₂ O ALLOW NiSO ₄ (aq) + 2OH ⁻ (aq) \rightarrow Ni(OH) ₂ (s) + SO ₄ ²⁻ (aq) ALLOW NiSO ₄ (aq) + 2KOH(aq) \rightarrow Ni(OH) ₂ (s) + K ₂ SO ₄ (aq) ALLOW acid/base OR neutralisation OR deprotonation ONLY IF [Ni(H ₂ O) ₆] ²⁺ AND [Ni(H ₂ O) ₄ (OH) ₂] used
			Type of reaction: precipitation ✓ INDEPENDENT of equation		ALLOW precipitate
			$[Ni(H_2O)_6]^{2+} + 4CN^- \rightarrow [Ni(CN)_4]^{2-} + 6H_2O(I) \checkmark$ Type of reaction: ligand substitution \checkmark INDEPENDENT of equation		ALLOW $[Ni(H_2O)_6]^{2+} + 4KCN \rightarrow [Ni(CN)_4]^{2-} + 6H_2O + 4K^+$ LOOK at formulae for E from 7(a)(i) (copied at bottom) ALLOW ECF in 7aii Equation for no round brackets around CN, i.e. $[NiCN_4]^{2-}$ in 7a(i) This is the only ECF allowed from 7ai structures. ALLOW ligand exchange
7	(b)	(i)	linear ✓	1	IGNORE planar

Q	uesti	on	Answer	Marks	Guidance
7	(b)	(ii)	Au/Gold has been oxidised from 0 to +1 ✓	2	IF Ag referred to, rather than Au, treat as a slip and apply BOD ALLOW 0 to 1 (i.e. no + sign for +1)
			O/Oxygen/O₂ has been reduced from 0 to −2 ✓		ALLOW 1 mark for ALL oxidation numbers correct with no oxidised or reduced OR oxidation and reduction wrong way round, e.g. Au goes from 0 to +1 and O goes from 0 to −2 ✓ Au is reduced from 0 to +1 and O is oxidised from 0 to −2 ✓
7	(b)	(iii)	IGNORE any charges shown within complexes (treat as rough working) 4Au + 8CN⁻ + 2H₂O + O₂ → 4[Au(CN)₂]⁻ + 4OH⁻ ✓✓ First mark for all 6 species Second mark for balancing	2	IF Ag referred to, rather than Au, treat as a slip and apply BOD IGNORE state symbols CARE: In $[Au(CN)_2]^-$, – sign is OUTSIDE square brackets For 1st mark, IGNORE e ⁻ present ALLOW 1 mark for balanced equation with CN ⁻ missing, i.e. $4Au + 2H_2O + O_2 \rightarrow 4Au^+ + 4OH^-$ ALLOW 1 mark rogue e ⁻ on either side ALLOW multiples, e.g. $2Au + 4CN^- + H_2O + \frac{1}{2}O_2 \rightarrow 2[Au(CN)_2]^- + 2OH^ Au + 2CN^- + \frac{1}{2}H_2O + \frac{1}{4}O_2 \rightarrow [Au(CN)_2]^- + OH^-$
7	(b)	(iv)	$CIO^{-} + 2H^{+} + 2e^{-} \rightarrow CI^{-} + H_{2}O \checkmark$	1	IGNORE state symbols ALLOW e for electron ALLOW multiples
			Total	13	

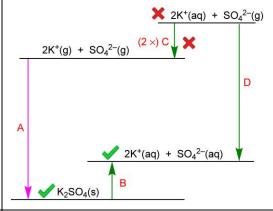

Q	uestion	Answer	Marks	Guidance
8	(a)	Cu ²⁺ : $(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^9 \checkmark$ Cu ⁺ : $(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^{10} \checkmark$	2	IGNORE repeated 1s ² after 1s ² prompt on answer line ALLOW 4s ⁰ , either before or after 3d ALLOW upper case D, etc and subscripts, e.g3S ₂ 3P ⁶ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
8	(b)	IGNORE any charges shown within formulae (treat as rough working) CuCO ₃ + 2HCOOH → Cu(HCOO) ₂ + H ₂ O + CO ₂ OR CuO + 2HCOOH → Cu(HCOO) ₂ + H ₂ O OR Cu(OH) ₂ + 2HCOOH → Cu(HCOO) ₂ + 2 H ₂ O ✓	1	IGNORE state symbols In formula of HCOOH/HCOO, ALLOW H, C and O in ANY order ALLOW H ₂ CO ₃ for H ₂ O and CO ₂ in carbonate equation ALLOW (HCOO) ₂ Cu for Cu(HCOO) ₂ DO NOT ALLOW equation with CuSO ₄
8	(c)	$2Cu^{2+} + 4I^{-} \rightarrow 2Cul(s) + I_{2} \checkmark$ State symbol for Cul(s) ONLY required	1	ALLOW multiples, e.g. $Cu^{2+} + 2I^{-} \rightarrow Cul(s) + \frac{1}{2}I_{2}$ IGNORE other state symbols, even if incorrect
8	(d)	Starch ✓ Blue/black to colourless/white ✓ MARK INDEPENDENTLY	2	IGNORE 'brown' in composite colour with blue or black, i.e. ALLOW blue/brown to colourless ALLOW black/brown to colourless DO NOT ALLOW just 'it turns colourless/is decoloured' Initial colour required IGNORE clear for colourless

Qı	estion	Answer	Marks	Guidance
8	(e)	WORKING REQUIRED Correct answer: x = 4 required evidence of working	5	FULL ANNOTATIONS MUST BE USED
		$n(S_2O_3^{2-})$ OR $n(Cu^{2+}) = \frac{0.0420 \times 23.5}{1000} = 9.87 \times 10^{-4} \text{ (mol)} \checkmark$ In 250.0 cm ³ solution, $n(Cu^{2+}) = 9.87 \times 10^{-3} \text{ (mol)} \checkmark$ $M(Cu(HCOO)_2 \cdot 4H_2O) = \frac{2.226}{9.87 \times 10^{-3}} = 225.5 \text{ (g mol}^{-1}) \checkmark$ $\mathbf{x}(H_2O)$ has mass of $225.5 - M(Cu(HCOO)_2)$ $= 225.5 - 153.5$ $= 72(.0) \checkmark$ $\mathbf{x} = \frac{72(.0)}{18(.0)} = 4$ WHOLE NUMBER needed		Alternative approach for final 3 marks based on mass: mass Cu(HCOO) ₂ = 9.87 × 10 ⁻³ × 153.5 = 1.515 g \checkmark $n(H_2O) = \frac{2.226 - 1.515}{18(.0)} = \frac{0.711}{18(.0)} = 0.0395 \text{ (mol) } \checkmark$ $\mathbf{x} = \frac{0.0395}{9.87 \times 10^{-3}} = 4 \checkmark$ ALLOW Cu(HCOO) ₂ •4H ₂ O
		and evidence of working ✓		COMMON ERRORS for 4 marks $x = 117$ (calc 116.78) $Use of 9.87 \times 10^{-4}$ (no scaling $\times 10$) $\rightarrow M = 2255.319$ $x = 17$ (calc 16.53) 4 marks $Use of 4.935 \times 10^{-4}$ (Use of $0.5 \times 9.87 \times 10^{-3}$) Check $n(Cu^{2+})$ for other ECFs Check for ECFs from incorrect $M(anhydr salt)$ Actual = 153.5
		Total	11	

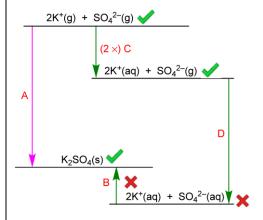
APPENDIX Q3(b)


Extra energy line placed **ABOVE** top line 3 out of 4 marks awarded for energy lines and species.

Top arrow is shown **FROM** $2K^+(g) + SO_4^{2-}(g)$ and arrow directions correct. Letter labels correct so last mark is awarded. **4/5 marks**


Extra energy line placed **BELOW** bottom line 3 out of 4 marks awarded for energy lines and species.

Top arrow is shown **FROM** $K_2SO_4(s)$ and arrow directions correct. Letter labels correct so last mark is awarded. **4/5 marks**


Same as left-hand response

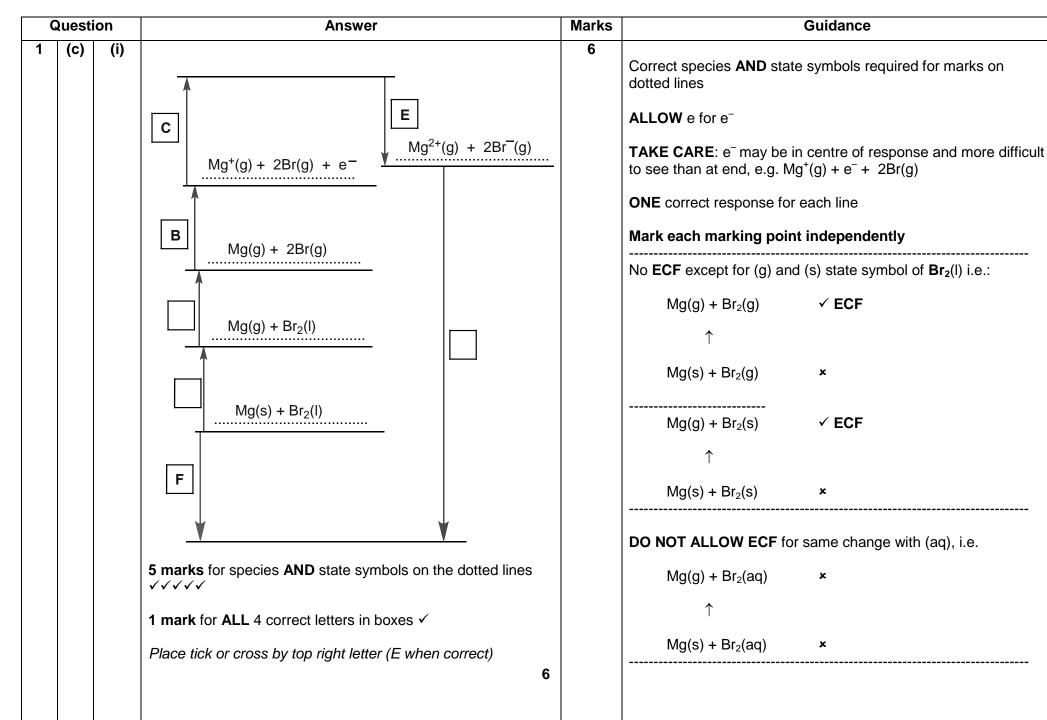
BUT top arrow shown **TO** $2K^+(g) + SO_4^{2-}(g)$ so last mark not awarded **3/5 marks**

Same as left-hand response

BUT bottom arrow shown **TO** K₂SO₄(s) so last mark not awarded **3/5 marks**

GCE

Chemistry A


Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2017

	Question		Answer	Marks	Guidance	
1	(a)		Formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓	2	IGNORE 'Energy needed' OR 'energy required' For 'compound', ALLOW: lattice, crystal, substance, solid	
			IGNORE standard conditions		Special case: 1 mark for gaseous ions ONLY 'Formation of 1 mole of compound from 1 mole of gaseous ions.' Duplicate 1 mole is a CON for 1st marking point	
1	(b)		FULL ANNOTATIONS MUST BE USE For ALL marking points, assume the following: • For 'ions', ALLOW 'atoms', e.g. Na has a larger (atomic) radius • For Mg²+, Na+, Br⁻ and Cl⁻, ALLOW symbols: e.g. Mg, Na, Br and Cl • ALLOW names: e.g. magnesium, sodium, bromine, bromide, chlorine, chloride • DO NOT ALLOW 'composite' particles, e.g. 'magnesium bromide/MgBr₂ has a larger ionic radius' DO NOT ALLOW molecules IGNORE idea of close packing of ions IGNORE electronegative			

Question	Answer	Marks	Guidance
	Comparing cation size AND charge (ORA based on Na ⁺)	3	ALLOW reverse argument throughout (ORA)
	Mg ²⁺ is smaller AND Mg ²⁺ has a greater charge OR Mg ²⁺ has a greater charge density ✓		For 'greater charge' part of mark, ALLOW Mg ²⁺ AND Na ⁺ seen anywhere ALLOW Mg is 2+ AND Na is 1+
	Comparing of anion size (ORA based on CF) Br ⁻ is larger		IGNORE just Mg ²⁺ is small comparison required
	OR Br⁻ has a smaller charge density ✓		IGNORE just Br ⁻ is large comparison required
	Comparing cation ⇔ anion attraction Mg ²⁺ has stronger attraction		ALLOW pull for attraction
	AND		ALLOW 'attracts with more force' for greater attraction
	Cl⁻ has stronger attraction ✓		BUT IGNORE just 'greater force' (could be repulsion) OR comparison of bond strength/energy to break bonds
	IGNORE 'nuclear' attraction		IGNORE comparisons of numbers of ions

Question	Answer	Marks	Guidance
1 (c) (i) FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2433 (kJ mol ⁻¹) award 2 marks	2	For alternative answers, ALLOW ECF See list below for marking of answers from common errors
	Total	13	

	Question	Answer	Marks	Guidance
2	(a)	positive OR + AND solid forms liquid OR liquid has more disorder ✓	3	For 'liquid has more disorder': ALLOW liquid has more ways of arranging energy/ more freedom/ more random molecules
		positive OR + AND gas (H₂) forms OR Mg dissolves/disappears ✓		ASSUME gas is H ₂ unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. CO ₂) IGNORE liquid forms IGNORE equation with state symbols Response should communicate why entropy increases
		negative OR – AND 9 mol gas form 4 mol gas OR forms 5 fewer mol of gas ✓		Numbers and gas are essential IGNORE 'forms fewer moles of gas' For mol, ALLOW molecules IGNORE numbers around equation Treated as rough working

Question	Answer	Marks	Guidance
Question 2 (b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 185 (J K ⁻¹ mol ⁻¹) award 2 marks Conversion of °C to K AND substitution of values into $\Delta G = \Delta H - T\Delta S$ $-1041 = -907 - 723 \times \Delta S \checkmark$ Calculation of ΔS AND conversion to J K ⁻¹ mol ⁻¹ $\Delta S = \frac{1041 - 907}{723} \times 1000 = \frac{134}{723} \times 1000$ $= 185 \text{ OR } 185.3 \text{ (J K}^{-1} \text{ mol}^{-1}) \checkmark$ ALLOW 3 SF up to calc value of 185.3388658 correctly rounded	Marks 2	Conversion to J may be carried out at start but no mark JUST for this conversion ALLOW ECF ONLY from use of values from question: (-)907 AND (-)1041 AND 450/723 COMMON ERRORS -185 wrong sign 1 mark 0.185 no conversion from kJ to J 1 mark 1.85 × 10 ⁻⁴ ÷ by 1000 instead of × 1 mark 298/297.8 (calc 297.7 recurring) Use of 450 °C instead of 723 K 1 mark -2694 wrong sign for 1041 1 mark -2694 wrong sign for 907 1 mark
			±4329 Wrong sign AND 450°C 0 marks

Question	Answer	Marks	Guidance
2 (c)	Signs of ΔH and ΔS ΔH is positive AND ΔS is positive \checkmark	3	FULL ANNOTATIONS MUST BE USED ALLOW ΔH is endothermic for ΔH is positive
	T ∆ S and temperature 'Value of' T ∆ S increases with temperature \checkmark		IGNORE sign of TΔS (treated as TΔS) i.e. ALLOW TΔS becomes more/less positive OR TΔS becomes more/less negative IGNORE ΔS increases with temperature
	Feasibility At high temperatures, ΔG is –ve OR ΔG < 0 AND At low temperatures, ΔG is +ve OR ΔG > 0		ONLY award feasibility mark if signs of ΔH and ΔS are correct, i.e. ΔH +ve AND ΔS +ve (1st marking point)
	OR $\Delta H - T\Delta S$ decreases with (increasing) temperature OR $\Delta H - T\Delta S$ from +ve to –ve with (increasing) temperature \checkmark OR the idea: As temperature increases, $T\Delta S$ outweighs ΔH to make $\Delta G < 0$		ALLOW $\Delta H - T\Delta S$ for ΔG , e.g. At high temperatures, $\Delta H - T\Delta S < 0$ OR $\Delta H < T\Delta S$ AND At low temperatures, $\Delta H - T\Delta S > 0$ OR $\Delta H > T\Delta S$
	Total	8	

	Question	Expected answers			Marks	Additional guidance
3	(a)	NO: 2 /Second AND H ₂ : 1 /First AND Overall: 3 /Third	d ✓		1	
3	(b)	rate × 125 ✓			1	DO NOT ALLOW just 'increases by 5 and then by 25 / 5 ² OR increases by 5 ³
3	(c)	FIRST, CHECK THE AN IF answer = 7.59×10^4 at THEN IF units are dm ⁶ in Initial working $k = \frac{1}{(3.24 \times 10^4)^4}$ OR 75858.31764 3 SF and standard form = 7.59×10^4 ✓ units: dm ⁶ mol ⁻² s ⁻¹ ✓	ward 2 marks nol ⁻² s ⁻¹ , award $\frac{4.34 \times 10^{-2}}{(\times 10^{-3})^2 \times 5.45 \times 10^{-3}}$	1 further mark	3	FULL ANNOTATIONS MUST BE USED NO ECF from incorrectly rearranged k expression ALLOW mol ⁻² dm ⁶ s ⁻¹ OR any order DO NOT ALLOW other units from incorrect k expression (Rate equation supplied on paper – not derived from data)
3	(d)	Change	Effect on rate	Effect on k	2	
		Increase in pressure	increases	none		ALL boxes are 'increases' EXCEPT top right is 'none'.
		Increase in temperature	increases	increases		
		Mark by column :	✓	✓		

	Questio	Expected answers	Marks	Additional guidance
3	(e)	Overall equation must be sum of step 1 and step 2	2	
		step 1: $H_2(g) + 2 NO(g) \rightarrow N_2O(g) + H_2O(g) \checkmark$		IGNORE any state symbols
		overall: $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g) \checkmark$		For other possible correct responses, contact Team Leader
		NO ECF for from incorrect step 1 equation		
		Total	9	

	Questi	ion	Answer	Marks	Guidance
4	(a)	(i)	Note: Examples must be for V, not other d block elements	4	FULL ANNOTATIONS MUST BE USED
			d block element: (3)d is highest energy sub-shell/orbital ✓		DO NOT ALLOW highest energy shell
			Transition element: has an ion with incomplete/partially-filled d sub-shell/orbital ✓		
			V 1s²2s²2p ⁶ 3s²3p ⁶ 3d³4s² ✓ full electron configuration required		ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³ ALLOW upper case D, etc and subscripts, e.g. [Ar]4S ₂ 3D ₈
			V²⁺: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ✓ full electron configuration required		DO NOT ALLOW USE OF [Ar] for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ for configuration of V and V ²⁺ ALLOW electron configuration with 4s ⁰
4	(a)	(ii)	$VO_3^- + 6 H^+ + 3 e^- \longrightarrow V^{2+} + 3 H_2O \checkmark$	3	ALLOW multiples
			$Zn \longrightarrow Zn^{2+} + 2e^{-} \checkmark$		NO ECF from incorrect half equations ALLOW multiples, e.g.
			$2 \text{ VO}_3^- + 12 \text{ H}^+ + 3 \text{ Zn} \longrightarrow 2 \text{ V}^{2+} + 6 \text{ H}_2\text{O} + 3 \text{ Zn}^{2+} \checkmark$ Multiples of this equation are the ONLY correct answer		$VO_3^- + 6 H^+ + 1\frac{1}{2} Zn \longrightarrow V^{2+} + 3 H_2O + 1\frac{1}{2} Zn^{2+}$

(Quest	ion	Answer	Marks	Guidance
4	(b)	(i)	Pt: Pt ²⁺ OR +2/2+ AND Cl: 2 × Cl ⁻ OR 2 × −1 OR 2 Cl ⁻ /Cl with oxidation number −1 ✓	1	DO NOT ALLOW response in terms of 'Cl₂'or 'Cl molecule', rather than Cl⁻ DO NOT ALLOW 'charges cancel' without the charges/oxidation numbers involved being stated DO NOT ALLOW if NH₃ shown to have charge
4	(b)	(ii)	H ₃ NPtNH ₃ CI CI CI CI CI CI NH ₃ CI NH ₃ CI NH ₃ CI Pt CI NH ₃ NH ₃ NH ₃ CI NH ₃ NH ₃ NH ₃ CI NH ₃	3	IGNORE any charge, i.e. Pt²+ OR Cl⁻, even if wrong Bonds MUST go to N of to NH₃ IGNORE labelled bond angles (even if wrong) DO NOT ALLOW any structure that cannot be in one plane If ligands are orientated correctly in cis AND trans, but connectivity to N is poor ALLOW 1 mark for two diagrams ALLOW coordinate bonds shown on diagrams provide that they start from a lone pair on ligands
4	(b)	(iii)	cis-platin binds to DNA (of cancer cells) OR cis-platin stops (cancer) cells dividing/replicating ✓	1	ALLOW cis-isomer: cis is essential IGNORE simply 'cis-platin used in cancer treatment'

Question	Answer	Marks	Guidance	
4 (c)		7	FULL ANNOTATIONS MUST BE USED ALLOW equilibrium signs in all equations IGNORE state symbols IGNORE an incorrect formula for an observation	
	Colour of Co ²⁺ (aq) OR [Co(H ₂ O) ₆] ²⁺ 1 mark Pink solution seen at least once AND not contradicted ✓		ALLOW 'Co ²⁺ (aq) is pink' or similar wording	
	REACTION OF Co ²⁺ with NaOH(aq) 3 marks		(aq) OR [Co(H ₂ O) ₆] ²⁺ is equivalent to 'solution' DO NOT ALLOW pink precipitate	
	Correct equation Co ²⁺ (aq) + 2OH⁻(aq) → Co(OH) ₂ (s) ✓ state symbols not required		ALLOW $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2(H_2O)_4 + 2H_2O$ ALLOW 'hybrid' equations, e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$	
	Observation blue precipitate/solid ✓ Type of reaction		$[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$ ALLOW any shade of blue IGNORE changes in colour over time	
	precipitation ✓		IF equation with [Co(H ₂ O) ₆] ²⁺ has been shown, ALLOW acid-base OR neutralisation	
	REACTION OF Co ²⁺ WITH HCl(aq) 3 marks			
	Correct equation $[Co(H_2O)_6]^{2^+} + 4CI^- \longrightarrow [CoCl_4]^{2^-} + 6H_2O \checkmark$		ALLOW $CoCl_4^{2-}$ i.e. no brackets OR $Co(Cl)_4^{2-}$ ALLOW $[Co(H_2O)_6]^{2^+} + 4HCl \longrightarrow [CoCl_4]^{2^-} + 6H_2O + 4H^+$ IGNORE $Co^{2^+} + 4Cl^- \longrightarrow CoCl_4^{2^-}$	
	Observation blue (solution) ✓		ALLOW any shades of blue DO NOT ALLOW blue precipitate	
	Type of reaction ligand substitution ✓		ALLOW ligand exchange	

Question	Answer	Marks	Guidance
	Total	19	

	Question		Answer	Marks	Guidance
5	(a)	(i)	partlially dissociates ✓	1	For dissociates, ALLOW ionises
5	(a)	(ii)	$(K_a =) \frac{[H^+(aq)[CH_3COO^-(aq)]}{[CH_3COOH(aq)]} \checkmark$ All species MUST have square brackets	1	ALLOW [H ₃ O ⁺] for [H ⁺] IGNORE $\frac{[H^+]^2}{[C_2H_5COOH]}$ OR $\frac{[H^+][A^-]}{[HA]}$ IGNORE state symbols

	Quest	ion	Answer	Marks	Guidance
5	(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.22, award 2 marks	2	
			$[H^+] = \sqrt{(1.30 \times 10^{-5}) \times (2.85 \times 10^{-2})}$		
			OR $6.09 \times 10^{-4} \text{ (mol dm}^{-3}\text{)} \checkmark$		ALLOW 6.09×10^{-4} to calculator value of $6.086871117 \times 10^{-4}$ correctly rounded
			pH = -log 6.09 × 10 ⁻⁴ = 3.22 ✓	of	ALLOW ECF from incorrect [H ⁺] derived from K_a AND [H ⁺]
			Must be from a calculated [H ⁺]		ALLOW use of quadratic equation – gives same answer of 3.22
			NOTE : The marks are ONLY available from attempted use of K_a AND [C ₂ H ₅ COOH]		COMMON ERRORS (MUST be to 2 DP) Mark other errors by ECF
					pH = 6.43 1 mark $-\log (1.30 \times 10^{-5}) \times (2.85 \times 10^{-2})$ No $\sqrt{}$
					pH = 3.16 1 mark Wrong acid ($K_a = 1.70 \times 10^{-5}$) but all else correct
					pH = 4.89 0 marks $-\log(1.30 \times 10^{-5}) = 4.89$ $-\log K_a$
					pH = 1.55 0 marks $-\log(2.85 \times 10^{-2}) = 4.87$ $-\log [H^+]$

C	Questi	ion	Answer	Marks	Guidance
5	(a)	(iv)	$C_2H_5COOH + CH_3COOH \Rightarrow C_2H_5COOH_2^+ + CH_3COO^- \checkmark$	2	ALLOW ECF for 2nd mark if H ⁺ transfer shown other way round, i.e.
			Base 2 Acid 1 Acid 2 Base 1 \checkmark 1st mark for correct products, $C_2H_5COOH_2^+$ AND CH_3COO^-		$C_2H_5COOH + CH_3COOH \Rightarrow C_2H_5COO^- + CH_3COOH_2^+ \times Acid 1$ Base 2 Base 1 Acid 2 \checkmark ECF
			2nd mark for correct labels		NO OTHER ECF
			211d Mark for correct labels		ALLOW A1, B1, etc or any unambiguous labels
5	(b)	(i)	proton/H⁺ acceptor ✓	1	DO NOT ALLOW OH ⁻ donor
5	(b)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 5.35 (g) award 3 marks $n(Ba(OH)_2) = (250/1000) \times 0.1250 = 0.03125$ (mol) \checkmark $M(Ba(OH)_2) = 171.3$ (g mol ⁻¹) \checkmark mass = $0.03125 \times 171.3 = 5.35$ (g) \checkmark NOTE: Answer to two decimal places	3	ALLOW ECF but answer required to two decimal places

C	Questi	ion	Answer	Marks	Guidance
5	(b)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.40 award 3 marks	3	Marks are for correctly calculated values. Working shows how values have been derived.
			[OH ⁻] = 2 × 0.1250 = 0.25(0) (mol dm ⁻³) \checkmark [H ⁺] = $\frac{1.00 \cdot 10^{-14}}{0.25(0)}$ OR 4(.00) × 10 ⁻¹⁴ (mol dm ⁻³) \checkmark Subsumes 1st mark pH = $-\log 4.00 \times 10^{-14} = 13.40 \checkmark$ Must be from a calculated [H ⁺]		ALLOW by ECF $\frac{1.00 \cdot 10^{-14}}{\text{calculated value of [OH^-]}}$ DO NOT ALLOW 13.4 not two decimal places
			pOH variation (also worth 3 marks) [OH ⁻] = 2 × 0.125 = 0.25(0) (mol dm ⁻³) \checkmark pOH = $-\log 0.25(0) = 0.60 \checkmark$ pH = 14.00 - 0.60 = 13.40 \checkmark Must be from a calculated pOH		COMMON ERRORS for pH 13.4 $\checkmark \checkmark$ not 2 DP 13.10 $\checkmark \checkmark$ no \times 2 for [OH] 13.1 \checkmark no \times 2 for [OH] AND 1 DP only 12.80 $\checkmark \checkmark$ \div 2 instead of \times 2 for [OH] 0.60 \checkmark 2 \times 0.1250 expressed as pH 0.90 no marks $-log$ 0.125

Question	Answer	Marks	Guidance
5 (c)	Possible conclusion from mixing C ₂ H ₅ COOH and Ba(OH) ₂ Buffer forms when • acid / C ₂ H ₅ COOH is in excess • OR buffer contains C ₂ H ₅ COOH AND C ₂ H ₅ COO ⁻ / (C ₂ H ₅ COO) ₂ Ba ✓ Independent of calculations n(Ba(OH) ₂) = (100/1000) × 0.1250 = 0.0125 (mol) ✓ n(C ₂ H ₅ COOH) = (200/1000) × 0.324 = 0.0648 (mol) ✓ Correct calculation showing that C ₂ H ₅ COOH is in excess Must use 2 × 0.0125 OR 0.0250 ✓ Possible calculations could show: • C ₂ H ₅ COOH is 0.0398 mol in excess • ratio n(C ₂ H ₅ COOH)/n(Ba(OH) ₂ > 2/1 • n(C ₂ H ₅ COOH) > n(OH ⁻)	4	ORA Buffer does not form when • acid / C₂H₅COOH is not in excess/ Ba(OH)₂ is in excess • OR buffer does not contains C₂H₅COOH AND C₂H₅COO⁻//(C₂H₅COO)₂Ba ✓ $n(C₂H₅COOH) = 0.0648 - 0.0250 = 0.0398$ ratio $n(C₂H₅COOH)/n(Ba(OH)₂) = 0.0648/0.0125 = 5.184/1$ $n(C₂H₅COOH) > n(OH⁻) = 0.0648 > 0.0250$

	Question	Answer	Marks	Guidance
5	(d)	Quality of written communication, QWC	5	FULL ANNOTATIONS MUST BE USED
		 2 marks are available for explaining how the equilibrium system allows the buffer solution to control the pH on addition of H⁺ and OH⁻ (see below) 		Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2
		• H ₂ CO ₃ = H ⁺ + HCO ₃ ⁻ ✓		DO NOT ALLOW HA \Rightarrow H ⁺ + A ⁻ DO NOT ALLOW more than one equilibrium equation.
		•		ALLOW response in terms of H ⁺ , A ⁻ and HA
		 H₂CO₃ reacts with added alkali /OH⁻ OR H₂CO₃ + OH⁻ → OR added alkali reacts with H⁺ 		IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.
		 OR H⁺ + OH⁻ → √ Equilibrium → right OR Equilibrium → HCO₃⁻ √ (QWC) 		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
		 HCO₃⁻ reacts with added acid /H⁺ ✓ Equilibrium → left OR Equilibrium → H₂CO₃ ✓ (QWC) 		ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid
		Total	22	

(Question	Answer	Marks	Guidance
6	(a)	$(K_c =) \frac{[NH_3]^2}{[N_2][H_2]^3} \checkmark$	1	Must be square brackets IGNORE state symbols

Question	Answer	Marks	Guidance
6 (b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $0.0368 \text{ dm}^6 \text{ mol}^{-2}$, award 6 marks IF answer = $0.0368 \text{ with incorrect units, award 5 mark}$ Equilibrium amounts in mol $n(N_2) = 10.40 - 5.60/2 = 7.6(0) \text{ (mol)} \checkmark$ $n(H_2) = 22.50 - 1.5 \times 5.60 = 14.1(0) \text{ (mol)} \checkmark$	6	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	Equilibrium concentrations (moles ÷ 5) 1 MARK $N_2 = 7.60/5 = 1.52 \pmod{\text{mol dm}^{-3}}$ AND $H_2 = 14.1/5 = 2.82 \pmod{\text{mol dm}^{-3}}$ AND $NH_3 = 5.60/5 = 1.12 \pmod{\text{mol dm}^{-3}}$		ALLOW ECF from incorrect moles of SO ₂ , O ₂ AND SO ₂ ALL three concentrations required for this mark
	Calculation of K_c and units $K_c = \frac{1.12^2}{1.52 \times 2.82^3} \checkmark$		ALLOW ECF from incorrect concentrations or moles (if concentration stage is omitted)
	$K_c = 0.0368 \checkmark$ dm ⁶ mol ⁻² \checkmark 3SF required		ALLOW ECF from wrong K_c expression for K_c value and units For units, ALLOW mol^{-2} dm^6 DO NOT ALLOW dm^6/mol^2
	NOTE : If inverted K_c expression used, look back to Q6(a) Then apply ECF with ALL marks being available in 16(b). Expected answer = 27.2 Expected units = $\text{mol}^2 \text{ dm}^{-6}$ See also Common errors		Common errors for K_c 1.47 × 10 ⁻³ missing ÷ 5 to calculate concentrations 4 marks + units mark (i.e. just one mark dropped) 0.0338 Subtracting 5.60 from initial moles of N_2 and H_2 3 marks + units mark 6.62 × 10 ⁻³ Use of initial concentrations of N_2 and H_2 (3 marks + units mark) 2.65 × 10 ⁻⁴ Use of initial moles of N_2 and H_2 and no ÷5 for concs (2 marks + units mark)
	2	4	27.2 Calculated value from inverted K_c 4 marks + units mark for $mo^{\hat{f}}$ dm^{-6}

Question		ion	Answer	Marks	Guidance
6	(c)	(i)	K_c is smaller AND (forward) reaction is exothermic OR ΔH is negative \checkmark	1	Link to ΔH /exothermic essential ALLOW reverse reaction is endothermic DO NOT ALLOW equilibrium shifts to the right (CON)
6	(c)	(ii)	\mathcal{K}_{c} is the same AND \mathcal{K}_{c} is temperature dependent/only changed by temperature OR \mathcal{K}_{c} is not changed by pressure \checkmark	1	ALLOW K_c is only changed by temperature IGNORE same number of moles on both side
			Total	9	

(Questi	ion	Answer	Marks	Guidance
7	(a)	(i)	complete circuit with voltmeter AND salt bridge linking two half-cells ✓	4	FULL ANNOTATIONS MUST BE USED circuit shown must be complete, ie must be capable of working salt bridge must be labelled and must dip into both solutions
			Cr electrode in Cr³+ solution ✓ Pt electrode in solution containing Fe²+ AND Fe³+ ✓		Half cells can be drawn in either order Half cells must show electrodes dipping into solutions ALLOW small gaps in circuit
			Conditions Units essential (Temperature of) 298 K / 25°C AND (solution concentrations of) 1 mol dm ⁻³ ✓ (may be on diagram)		ALLOW 1M and 1 mol/dm³ DO NOT ALLOW 1 mol IGNORE pressure (No gases in this cell)
7	(a)	(ii)	$Cr(s) + 3Fe^{3+}(aq) \rightarrow Cr^{3+}(aq) + 3Fe^{2+}(aq) \checkmark$ State symbols not required	1	IGNORE state symbols ALLOW equilibrium sign providing reactants and products are
7	(a)	(iii)	<i>E</i> = 1.51 (V)	1	on correct sides of equation IGNORE sign for E
-	(4)	(,	AND Sign of Cr electrode: – /negative ✓		TOTO NE SIGNI OF E
7	(b)		Assume Cr ³⁺ Cr OR Cr half-cell unless otherwise stated.	3	FULL ANNOTATIONS MUST BE USED
			[Cr³+] increases OR > 1 mol dm⁻³ ✓		ALLOW [Cr ³⁺] more than standard concentration/1 mol dm ⁻³ IGNORE CrCl ₃ reacts
			Equilibrium (shown in table) shifts to right OR towards Cr ✓		Take care: Response may refer to a reverse half equation written by candidate. The equilibrium then shifts to left.
			Electrons are removed/used up/fewer electrons released OR		IGNORE comments about E [⊕] changing

(Questi	ion	Answer	Marks	Guidance
			E (for Cr³+ Cr) is less negative / more positive OR The cell has a smaller difference in E ✓		IGNORE just 'cell potential decreases' (in the question)
7	(c)	(i)	$HCOOH(I) \rightarrow CO_2(g) + 2H^+ + 2e^-$	1	ALLOW multiples e.g. $2HCOOH(I) \rightarrow 2CO_2(g) + 4H^+ + 4e^-$
7	(c)	(ii)	HCOOH is a liquid OR is less volatile AND HCOOH is easier to store/transport/stored more safely OR H₂ is more explosive/more flammable ✓	1	Assume that 'it' refers to HCOOH ALLOW ORA throughout IGNORE comments about efficiency IGNORE comments about biomass and renewable
7	(d)	(i)	amount MnO ₄ ⁻ used = 0.01500 × $\frac{25.40}{1000}$ = 3.81 × 10 ⁻⁴ (mol) \checkmark amount SO ₃ ²⁻ = 3.81 × 10 ⁻⁴ × 2.5 = 9.525 × 10 ⁻⁴ (mol) \checkmark amount SO ₃ ²⁻ in original 250 cm ³ = 10 × 9.525 × 10 ⁻⁴ = 9.525 × 10 ⁻³ mol \checkmark Mass of Na ₂ SO ₃ in sample = 126.1 × 9.525 × 10 ⁻³ g = 1.20 g \checkmark $n(\text{H}_2\text{O}) = \frac{2.40 - 1.20}{18.0} = 6.67 \times 10^{-2}$ (mol) \checkmark	6	FULL ANNOTATIONS MUST BE USED IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step Working: at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.01500 allow 0.015/0.0150 ALLOW ECF at all stages ALLOW M(hydrated sodium sulfite) = $\frac{2.40}{9.525 \times 10^{-3}}$ = 252 ✓ Molar mass of H₂O = 252 − 126.1 = 125.9 ✓

Question	Answer	Marks	Guidance
	$n(\text{Na}_2\text{SO}_3): n(\text{H}_2\text{O}) = 9.525 \times 10^{-3}: 6.67 \times 10^{-2} = 1:7$		Number of H ₂ O of crystallisation = $\frac{125.9}{18.0}$ = 7
	Formula = Na ₂ SO ₃ •7H ₂ O ✓		Formula = $Na_2SO_3 \cdot 7H_2O \checkmark$
	Formula is required. 1:7 ratio is insufficient		
(d) (i	i) MARK INDEPENDENTLY Except for multiples, equations are only correct answers	3	ALLOW multiples and equilibrium signs throughout IGNORE state symbols throughout
	Overall: $2MnO_4^- + 6 H^+ + 5 SO_3^{2-} \rightarrow 2Mn^{2+} + 5 SO_4^{2-} + 3 H_2O \checkmark$		e.g. $MnO_4^- + 3 H^+ + 2\frac{1}{2} SO_3^{2-} \rightarrow Mn^{2+} + 2\frac{1}{2} SO_4^{2-} + 1\frac{1}{2} H_2O$
	Half equations: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O \checkmark$		
	$SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^- \checkmark$		
	Total	20	