

Answer all the questions.

1. A chemist carries out reactions of barium and barium nitride, Ba_3N_2 .

Reaction 1 Barium is reacted with water.

Reaction 2 Barium nitride is reacted with water, forming an alkaline solution and an alkaline gas.

Reaction 3 Barium is reacted with an excess of oxygen at 500°C , forming barium peroxide, BaO_2 .

(i) Write equations for **Reaction 1** and **Reaction 2**.

Ignore state symbols.

Reaction 1: _____

Reaction 2: _____

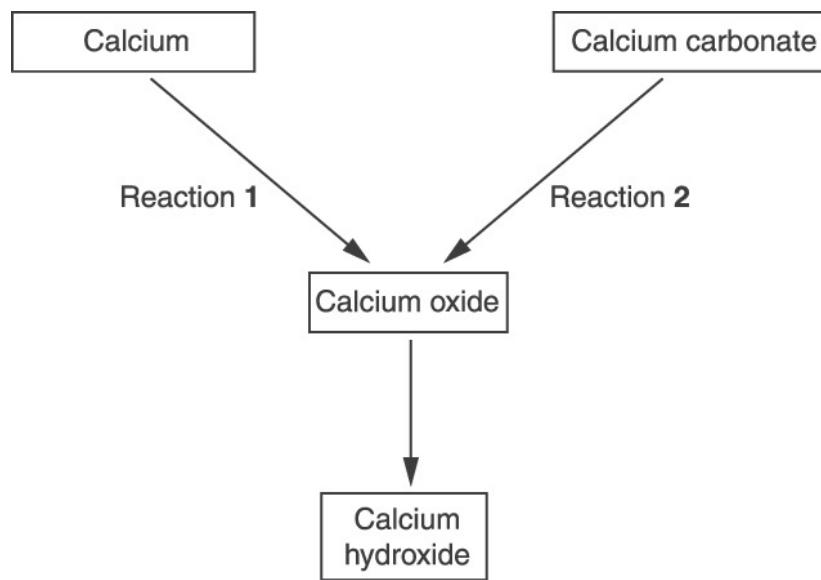
[3]

(ii) Predict the structure and bonding of Ba_3N_2 .

[1]

(iii) BaO_2 formed in **Reaction 3** contains barium and peroxide ions.

The peroxide ion has the structure $[\text{O}-\text{O}]^{2-}$.


Suggest a 'dot-and-cross' diagram for BaO_2 .

Show outer shell electrons only.

[1]

2(a). Calcium is in Group 2 of the Periodic Table.

The diagram shows some reactions of calcium and its compounds.

Reactions 1 and 2 both form calcium oxide.

(i) Write the equation for reaction 1.

----- [1]

(ii) What type of reaction is reaction 2?

----- [1]

(b). A student prepared some calcium hydroxide by adding a small piece of calcium to a large excess of water.

Describe what the student would observe and write the equation for the reaction.

Observation -----

Equation ----- [2]

3. This question looks at groups in the periodic table.

Calcium and strontium are Group 2 metals. They both react with water.

A chemist reacts 0.200 g of strontium with 250 cm³ water, leaving a colourless solution containing strontium ions. The volume remains at 250 cm³.

(i) Write an equation for the reaction between strontium and water.

Include state symbols.

----- [1]

(ii) Calculate the concentration, in mol dm⁻³, of strontium ions in the resulting solution.

concentration of strontium ions = _____ mol dm⁻³ [2]

(iii) A student plans to carry out this experiment using 0.200 g of calcium instead of 0.200 g of strontium.

Predict the difference, if any, between the volume of gas produced by calcium and strontium.

Explain your reasoning and include a calculation in your answer.

----- [3]

4. Ionisation energies have been used to develop a model for electron configuration.

(i) Fig. 16.1 shows the first ionisation energies for Li, Be, F and Ne.

Add points for the missing elements across Period 2.

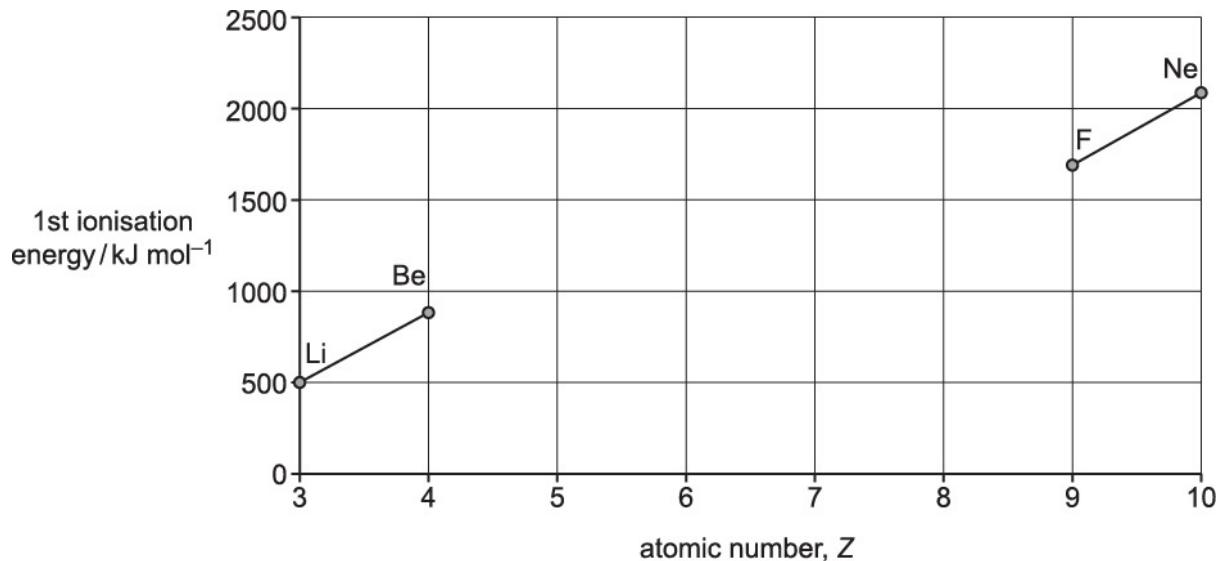


Fig. 16.1

[2]

(ii) First ionisation energies decrease down groups in the Periodic Table.

Explain this trend and the effect on the reactivity of groups containing metals.

[3]

5(a). This question is about chemicals used by gardeners.

A garden product contains hydrated ammonium iron(II) sulfate, $(\text{NH}_4)_2\text{Fe}(\text{SO}_4)_2 \cdot x\text{H}_2\text{O}$. $(\text{NH}_4)_2\text{Fe}(\text{SO}_4)_2 \cdot x\text{H}_2\text{O}$ contains 27.55% by mass of water of crystallisation.

Calculate the value of x in the formula $(\text{NH}_4)_2\text{Fe}(\text{SO}_4)_2 \cdot x\text{H}_2\text{O}$.

Show your working.

$x = \text{-----}$ [3]

(b). The garden product in the previous question part is a solid mixture of the following ingredients:

- Hydrated ammonium iron(II) sulfate, $(\text{NH}_4)_2\text{Fe}(\text{SO}_4)_2 \cdot x\text{H}_2\text{O}$, which is soluble in water
- Crushed limestone (calcium carbonate)
- Sand.

(i) Suggest why crushed limestone has been included in this garden product.

[1]

(ii) *Plan a procedure on a test tube scale to show that the solid mixture contains the following ions:

- NH_4^+ , Fe^{2+} and SO_4^{2-} present in $(\text{NH}_4)_2\text{Fe}(\text{SO}_4)_2 \cdot x\text{H}_2\text{O}$
- CO_3^{2-} present in crushed limestone.

Show your reasoning, including relevant equations.

Handwriting practice lines consisting of three horizontal dashed lines for letter formation.

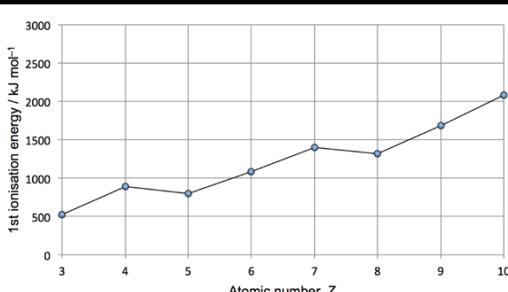
END OF QUESTION PAPER

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
1	i	<p>Reaction 1: $\text{Ba} + 2\text{H}_2\text{O} \rightarrow \text{Ba}(\text{OH})_2 + \text{H}_2 \checkmark$</p> <p>Reaction 2: $\text{Ba}_3\text{N}_2 + 6\text{H}_2\text{O} \rightarrow 3\text{Ba}(\text{OH})_2 + 2\text{NH}_3$</p> <p>Correct products \checkmark</p> <p>Balancing \checkmark</p>	3	<p>Ignore state symbols</p> <p>Examiner's Comments</p> <p>Both equations were relatively challenging. Reaction 1 was a direct question about reactions of Group 2 elements. Reaction 2 demanded a higher level of application based upon information given. Many identified the alkaline gas as NH₃, but then incorrectly assumed that the alkaline solution was BaO instead of Ba(OH)₂. Weaker candidates suggested equations with hypothetical species that could not have born any relation to formulae that they might have encountered before.</p>
	ii	Giant ionic (lattice) \checkmark	1	<p>ALLOW 'Giant lattice with ionic bonds' ALLOW 'Giant ionic bonds' DO NOT ALLOW 'atoms or molecules or dipoles'</p> <p>Examiner's Comments</p> <p>This question was relatively well answered, although some candidates did negate the mark by referring to molecules of Ba₃N₂ either directly or by indirect reference to intermolecular forces.</p>
	iii		1	<p>Ba must have a 2+ charge Ba can be with or without octet. IGNORE lack of charge on O₂²⁻ ion</p>

Mark Scheme

Question	Answer/Indicative content	Marks	Guidance
	$\left[\begin{array}{c} \text{xx} \\ \text{x} \text{Ba} \text{x} \\ \text{xx} \end{array} \right]^{2+} \left[\begin{array}{c} \bullet\bullet \quad \bullet\bullet \\ \bullet \text{O} \quad \bullet \text{O} \text{x} \\ \bullet\bullet \quad \bullet\bullet \end{array} \right]^{2-}$		<p>O_2^{2-} ion to have 12 electrons belonging to O atoms + 2 other electrons of another symbol.</p> <p>The 2 other electrons must match Ba if Ba has an octet.</p>
OR	$\left[\begin{array}{c} \text{xx} \\ \text{x} \text{Ba} \text{x} \\ \text{xx} \end{array} \right]^{2+} \left[\begin{array}{c} \bullet\bullet \quad \bullet\bullet \\ \bullet \text{O} \quad \bullet \text{O} \text{x} \\ \bullet\bullet \quad \bullet\bullet \\ \bullet\bullet \quad \bullet\bullet \end{array} \right]^{2-}$		<p>If O electrons are shown as 6 of one symbol and 6 of another, each O must have six electrons of the same symbol</p>
OR	$\left[\begin{array}{c} \text{xx} \\ \text{x} \text{Ba} \text{x} \\ \text{xx} \end{array} \right]^{2+} \left[\begin{array}{c} \bullet\bullet \quad \bullet\bullet \\ \bullet \text{O} \quad \bullet \text{O} \text{x} \\ \bullet\bullet \quad \bullet\bullet \\ \bullet\bullet \quad \bullet\bullet \end{array} \right]^{2-}$		<p>ALLOW</p> $\left[\begin{array}{c} \text{xx} \\ \text{x} \text{Ba} \text{x} \\ \text{xx} \end{array} \right]^{2+} \left[\begin{array}{c} \bullet\bullet \quad \bullet\bullet \\ \bullet \text{O} \text{x} \quad \bullet \text{O} \text{x} \\ \bullet\bullet \quad \bullet\bullet \end{array} \right]^{2-}$
OR	$\left[\begin{array}{c} \text{xx} \\ \text{x} \text{Ba} \text{x} \\ \text{xx} \end{array} \right]^{2+} \left[\begin{array}{c} \bullet\bullet \quad \bullet\bullet \\ \bullet \text{O} \quad \bullet \text{O} \text{:} \\ \bullet\bullet \quad \bullet\bullet \end{array} \right]^{2-}$		<p>OR</p> $\left[\begin{array}{c} \text{xx} \\ \text{x} \text{Ba} \text{x} \\ \text{xx} \end{array} \right]^{2+} \left[\begin{array}{c} \bullet\bullet \quad \bullet\bullet \\ \bullet \text{O} \text{:} \quad \bullet \text{O} \text{:} \\ \bullet\bullet \quad \bullet\bullet \end{array} \right]^{2-}$
			<p>Examiner's Comments</p> <p>This question was designed to be difficult, but many candidates rose to the challenge. Weaker candidates simply drew a 'dot-and-cross' diagram for BaO_2 in which they treated each oxygen species as an oxide ion each having a single negative charge. Many stronger candidates did realise from the structure given in the question that there was only a single bond between the two oxygen atoms, as was clear from their suggested diagram. Only the stronger candidates managed to incorporate correctly the electrons from barium, to arrive at a correct version of the bonding of BaO_2.</p>


Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
Total				5	
2	a	i	$2\text{Ca} + \text{O}_2 \rightarrow 2\text{CaO}$ ✓	1	<p>ALLOW multiples e.g. $\text{Ca} + \frac{1}{2}\text{O}_2 \rightarrow \text{CaO}$ IGNORE state symbols</p> <p>Examiner's Comments</p> <p>This straightforward equation was well known.</p>
		ii	Thermal decomposition ✓	1	<p>Examiner's Comments</p> <p>Some candidates omitted 'thermal' and so did not secure the mark while others wrote out the equation rather than stating the type of reaction.</p>
	b		<p>Effervescence OR fizzing OR bubbling OR gas produced AND The solid OR calcium OR the metal would dissolve OR disappear OR a (colourless) solution forms ✓</p> <p>$\text{Ca} + 2\text{H}_2\text{O} \rightarrow \text{Ca}(\text{OH})_2 + \text{H}_2$ ✓</p>	2	<p>IGNORE 'hydrogen produced' but ALLOW 'hydrogen gas produced' DO NOT ALLOW an incorrectly named gas (eg CO_2) produced</p> <p>ALLOW multiples IGNORE state symbols</p> <p>Examiner's Comments</p> <p>In the observation section most candidates noted effervescence but few then added the necessary observation of the calcium dissolving often despite $\text{Ca}(\text{OH})_2(\text{aq})$ appearing in the equation. The equation was well answered generally, although CaOH was not an uncommon species.</p>
			Total	4	

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
3	i	$\text{Sr(s)} + 2\text{H}_2\text{O(l)} \rightarrow \text{Sr(OH)}_2\text{(aq)} + \text{H}_2\text{(g)}$ Note: all state symbols required	1	allow multiples
	ii	$n(\text{Sr}) = n(\text{Sr}^{2+}) = 0.200 / 87.6 = 2.28 \times 10^{-3}$ (1) $[\text{Sr}^{2+}] = 2.28 \times 10^{-3} \times 1000 / 250 = 9.13 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$ (1)	2	allow ecf
	iii	Greater volume with Ca AND larger amount / more moles of Ca OR A_r Ca is smaller (1) $n(\text{Ca}) = 0.200/40.1 = 0.005(0)$ (mol) (1) volume H_2 with Sr = 55 cm ³ AND volume with Ca = 120 cm ³ OR 65 cm ³ more H_2 with Ca (1)	3	ora allow values up to calculator values allow volumes ± 1 cm ³
		Total	6	

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
4	i	<p>1st ionisation energy / kJ mol^{-1}</p> <p>Atomic number, Z</p> <p>Increase from 5–7 (B→N) AND 5 below 4 but above 3 ✓</p> <p>8(O) below 7 and 9 AND above 6 ✓</p>	2	<p>ALLOW if points correct but straight lines not drawn</p>
	ii	<p>Trend described down group</p> <p><i>Atomic radius</i> larger atomic radius OR more shells ✓</p> <p><i>Effect of nuclear charge/shielding</i> Increased nuclear charge is outweighed by increased distance/shielding OR more/increased shielding ✓</p> <p><i>Reactivity AND Nuclear attraction</i> Reactivity increases AND less nuclear attraction OR less attraction on electrons ✓</p>	3	<p>FULL ANNOTATIONS MUST BE USED</p> <hr/> <p>ALLOW ORA but comparison should be used for each mark.</p> <p>ALLOW 'more/higher energy levels' ALLOW 'electrons further from nucleus' ALLOW 'different shell' OR 'new shell'</p> <p>IGNORE more orbitals OR more sub-shells</p> <p>ALLOW more electron repulsion from inner shells IGNORE responses with no comparison e.g. 'is shielding' Mark requires statement that reactivity increases AND reason</p> <p>IGNORE nuclear charge/effective nuclear charge</p> <p>ALLOW 'less nuclear pull' OR 'electrons held less tightly'</p>

Mark Scheme

Question	Answer/Indicative content	Marks	Guidance
	Total	5	

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance	
5	a	$n(\text{H}_2\text{O}) = 27.55/18.0 = 1.5306 \text{ (mol)} \checkmark$ $n((\text{NH}_4)_2\text{Fe}(\text{SO}_4)_2) = 72.45/284.0 = 0.2551 \text{ (mol)} \checkmark$ whole number ratio of $(\text{NH}_4)_2\text{Fe}(\text{SO}_4)_2 : \text{H}_2\text{O}$ $= 0.2551 : 1.5306 = 1 : 6$ OR $x = 6 \checkmark$	3	If there is an alternative answer, check to see if there is any ECF credit possible ALLOW calculator value or rounding to two significant figures or more but IGNORE 'trailing zeroes' if wrong M produces such numbers throughout. ALLOW ECF If no working, ALLOW 1 mark for $x = 6$.	
	b	i	To neutralise acidic soil \checkmark	1	

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
	ii	<p><i>Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.</i></p> <p>Level 3 (5–6 marks) Describes practical details of tests and observations that allows all four ions to be identified AND Attempts associated equations, with most correct.</p> <p><i>There is a well-developed line of reasoning and the method is clear and logically structured. The information presented is relevant and substantiated by observations from the tests described and practical details.</i></p> <p>Level 2 (3–4 marks) Describes most practical details of tests including the observations that allows most ions to be identified AND Attempts associated equations, with some correct.</p> <p><i>There is a line of reasoning presented and the method has some structure. The information presented is in the most-part relevant and supported by some evidence of observations from the tests described but practical details may be absent.</i></p> <p>Level 1 (1–2 marks) Describes some of the practical details of tests and observations would only allow some ions to be identified. OR Attempts associated equations, with some correct.</p> <p><i>The information is basic and the method lacks structure. The information is supported by limited evidence of the observations, the relationship to the evidence may not be clear.</i></p> <p>0 marks No response or no response</p>	6	<p>Indicative scientific points may include</p> <p>Practical details:</p> <ul style="list-style-type: none"> • Sample stirred with water and mixture filtered. • SO_4^{2-}, Fe^{2+}, NH_4^+ tests on filtrate. • CO_3^{2-} test on residue or garden product <p>Tests and associated equations:</p> <p>CO_3^{2-} test: <i>Test:</i> Add nitric acid. <i>Observation:</i> effervescence. <i>Equation:</i> $\text{CaCO}_3 + 2\text{H}^+ \rightarrow \text{Ca}^{2+} + \text{CO}_2 + \text{H}_2\text{O}$ ALLOW $\text{CO}_3^{2-} + 2\text{H}^+ \rightarrow \text{CO}_2 + \text{H}_2\text{O}$ OR overall equation of CaCO_3 and an acid.</p> <p>SO_4^{2-} test: <i>Test:</i> Add $\text{BaCl}_2(\text{aq})/\text{Ba}(\text{NO}_3)_2(\text{aq})/\text{Ba}^{2+}(\text{aq})$. <i>Observation:</i> white precipitate. <i>Equation:</i> $\text{Ba}^{2+} + \text{SO}_4^{2-} \rightarrow \text{BaSO}_4$</p> <p>$\text{Fe}^{2+}$ test: <i>Test:</i> Add $\text{NaOH}(\text{aq})$ <i>Observation:</i> green precipitate <i>Equation:</i> $\text{Fe}^{2+} + 2\text{OH}_- \rightarrow \text{Fe}(\text{OH})_2$</p> <p>$\text{NH}_4^+$ test: <i>Test:</i> Add $\text{NaOH}(\text{aq})$ and warm <i>Observation:</i> gas turns red litmus indicator blue <i>Equation:</i> $\text{NH}_4^+ + \text{OH}^- \rightarrow \text{NH}_3 + \text{H}_2\text{O}$</p>

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance
		worthy of credit.		
		Total	10	